
U.S. Department of the Interior
U.S. Geological Survey

Scientific Investigations Report 2010–5244

Prepared as part of the U.S. Geological Survey Greater Everglades Priority Ecosystem Science

Analysis and Simulation of Water-Level,  
Specific Conductance, and Total Phosphorus  
Dynamics of the Loxahatchee National Wildlife Refuge,  
Florida, 1995–2006



Cover photographs.  Loxahatchee National Wildlife Refuge, Florida.

Banner: Heather S. Henkel, USGS St. Petersburg Coastal and Marine Science Center.

Background: Tracy Enright, USGS St. Petersburg Coastal and Marine Science Center.

Cover illustrations.  Located in this report.

Top right: See figure 3.

Top left: See figure 30.

Bottom left: See figure 31.



Analysis and Simulation of Water-Level,  
Specific Conductance, and Total Phosphorus  
Dynamics of the Loxahatchee National Wildlife Refuge, 
Florida, 1995–2006

By Paul A. Conrads and Edwin A. Roehl, Jr.

Prepared as part of the U.S. Geological Survey Greater Everglades Priority Ecosystem Science

Scientific Investigations Report 2010–5244

U.S. Department of the Interior
U.S. Geological Survey



U.S. Department of the Interior
KEN SALAZAR, Secretary

U.S. Geological Survey
Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2010

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, 
natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS

For an overview of USGS information products, including maps, imagery, and publications,  
visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the 
U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to 
reproduce any copyrighted materials contained within this report.

Suggested citation:
Conrads, P.A., and Roehl, E.A., Jr., 2010, Analysis and simulation of water-level, specific conductance, and total  
phosphorus dynamics of the Loxahatchee National Wildlife Refuge, Florida, 1995–2006: U.S. Geological Survey  
Scientific Investigations Report 2010–5244, 64 p.

http://www.usgs.gov
http://www.usgs.gov/pubprod
http://store.usgs.gov


iii

Contents

Abstract ...........................................................................................................................................................1
Introduction.....................................................................................................................................................2

Purpose and Scope...............................................................................................................................2
Description of the Study Area.............................................................................................................5
Previous Studies....................................................................................................................................7
Approach.................................................................................................................................................8

Data-Collection Networks.............................................................................................................................8
Data Preparation..................................................................................................................................10
Limitations of the Historical Datasets..............................................................................................10

Characterization of Marsh and Canal Water Levels ..............................................................................12
Simulating Water Levels, Specific Conductance, and Total Phosphorus ..........................................16

Artificial Neural Networks.................................................................................................................16
Development of Water-Level, Specific Conductance, and Total Phosphorus Models............18
Statistical Measures of Prediction Accuracy.................................................................................18
Water-Level Models............................................................................................................................19
Specific Conductance and Total Phosphorus Models..................................................................25

Modeling Specific Conductance Residual Error (εSC) ..........................................................27
Modeling Total Phosphorus Residual Error (εTP) ...................................................................27

Analysis of Specific Conductance and Total Phosphorus Trends Using the  
Spatially Interpolating Artificial Neural Network Models...............................................30

Development of the Decision Support System........................................................................................33
Architecture..........................................................................................................................................34
Model Simulation Control, Streaming Graphics, and Three-Dimensional  

Visualization Program ...........................................................................................................34
Application of the LOXANN Decision Support System .........................................................................37

Percentage of Historical Flow...........................................................................................................37
User-Defined Hydrograph..................................................................................................................38

Summary........................................................................................................................................................40
Acknowledgments........................................................................................................................................40
References Cited..........................................................................................................................................41
Appendix 1.  List of Variables Used in the Study.....................................................................................43
Appendix 2.  User’s Manual for the LOXahatchee Artificial Neural Network  

Decision Support System (LOXANN DSS)..................................................................................49



iv

Figures
	 1–4.	 Maps showing—
	 1.  Vegetation map of southern Florida circa 1943...............................................................3
	 2.  The Arthur R. Marshall (ARM) Loxahatchee National Wildlife Refuge  

and the Water Conservation Areas of the Everglades, Florida.....................................4
	 3.  Water conservation areas, stormwater treatment areas, and boundary canals 

near the Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida.............5
	 4.  The four major plant communities of the Arthur R. Marshall Loxahatchee  

National Wildlife Refuge, Florida.......................................................................................6
	 5.  Graph showing water regulation schedule for Water Conservation Area 1,  

Arthur R. Marshall Loxaxatchee National Wildlife Refuge.....................................................7
	 6–8.	 Maps showing—
	 6.  Location of weather and continuous water-level stations and flow-control 

structures, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida.........9
	 7.  Location of District transect water-quality monitoring network (XYZ) and  

the Everglades Protection Area (EVPA) network, Arthur R. Marshall  
Loxahatchee National Wildlife Refuge, Florida.............................................................11

	 8.  Flow-control structures and aggregation of structures used in the analysis  
and model development, Arthur R. Marshall Loxahatchee National Wildlife 
Refuge, Florida....................................................................................................................12

	 9–11.	 Graphs showing—
	 9.  Daily water levels for six continuous streamgaging stations, Arthur R. Marshall 

Loxahatchee National Wildlife Refuge, Florida, January 1995 to December 2004.....13
	 10.  Average daily rainfall and the 1-day change in water level at site 1-7,  

and daily water level at site 1-7, Arthur R. Marshall Loxahatchee  
National Wildlife Refuge, Florida, January 1995 to December 2004..........................14

	 11.  Two-hundred-twenty-day moving window average of rainfall and daily  
water level at site 1-7, Arthur R. Marshall Loxahatchee National Wildlife  
Refuge, Florida, January 1995 to December 2004.........................................................15

	12–13.	 Diagrams showing—
	 12.  Multilayer perceptron artificial neural network architecture.....................................17
	 13.  Water-level, specific conductance, and total phosphorus model architecture......18
	 14.  Screen capture of user interface of the super tau tool........................................................19
	15–20.	 Graphs showing—
	 15.  Measured and linearly predicted daily water levels and SUMQ at site 1-7,  

Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida,  
January 1995 to January 2007..........................................................................................20

	 16.  Linear regression water-level model errors for six continuous streamgaging  
stations, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida,  
April 2000 to December 2006.............................................................................................21

	 17.  Average daily rainfall and five frequency components for the rainfall  
time series, Arthur R. Marshall Loxahatchee National Wildlife Refuge,  
Florida, January 2002 to December 2003........................................................................22

	 18.  Measured and predicted water-level model error for six continuous streamgaging 
stations, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida...........23

	 19.  Measured and predicted water level for six continuous streamgaging  
stations, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida...........23

	 20.  Water levels at sites 1-8T and 1-8C, and a 0.16-foot adjustment to  
water level at site 1-8C, Arthur R. Marshall Loxahatchee National  
Wildlife Refuge, Florida, March 2001 to December 2006.............................................24



v

	 21–28.	 Graphs showing—
	 21.  Measured and predicted specific conductance from the static  

SIANN model for XYZ and EVPA networks, Arthur R. Marshall  
Loxahatchee National Wildlife Refuge, Florida.............................................................26

	 22.  Measured and predicted total phosphorus concentration from the  
static SIANN models for the EVPA network, Arthur R. Marshall  
Loxahatchee National Wildlife Refuge, Florida.............................................................26

	 23.  Measured and predicted specific conductance model error for  
XYZ and EVPA networks, Arthur R. Marshall Loxahatchee National  
Wildlife Refuge, Florida......................................................................................................28

	 24.  Measured and predicted specific conductance for XYZ and EVPA networks, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida...........................28

	 25.  Measured and predicted total phosphorus model error for the EVPA network, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida...........................29

	 26.  Measured and predicted total phosphorus for the EVPA network,  
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida...........................29

	 27.  Measured and predicted specific conductance to evaluate trends at 
XYZ and EVPA networks, Arthur R. Marshall Loxahatchee National  
Wildlife Refuge, Florida......................................................................................................31

	 28.  Measured and predicted total phosphorus to evaluate trends at EVPA  
networks, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida........31

	 29.  Color gradient maps of specific conductance and total phosphorus as predicted  
by SIANNs for the Arthur R. Marshall Loxahatchee National Wildlife Refuge,  
Florida, for January 11, 1995; December 28, 1999; and December 14, 2004.......................32

	 30.  Diagram showing architecture of the LOXahatchee Artificial Neural Network 
(LOXANN) decision support system............................................................................................34

	31–33.	 Screen captures showing—
	 31.  Model simulator controls used to set parameters and run a simulation  

in the LOXANN decision support system........................................................................35
	 32.  Streaming graphics displayed during simulation in the LOXANN  

decision support system....................................................................................................35
	 33.  Three-dimensional surfaces of water levels, specific conductance, and total 

phosphorus, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida.......36
	34–38.	 Graphs showing—
	 34.  Simulated actual conditions and a 40-percent increase to the historical flows  

for aggregated flows of Q4, Arthur R. Marshall Loxahatchee National Wildlife 
Refuge, Florida, May 2000 through April 2006................................................................37

	 35.  Cumulative frequency of slopes from the canal to marsh for simulated  
actual conditions and a 40-percent increase to the historical flows for  
the aggregated Q4 control-structure flow, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida.....................................................................................38

	 36.  Historical inflow and outflow hydrographs and a user-defined hydrograph  
for the aggregated Q4 flow, Arthur R. Marshall Loxahatchee National  
Wildlife Refuge, Florida, January 2001 through December 2004................................38

	 37.  Simulated actual conditions and conditions from a user-defined hydrograph  
for aggregated flows of Q4, Arthur R. Marshall Loxahatchee National Wildlife 
Refuge, Florida, January 2001 to April 2006....................................................................39

	 38.  Cumulative frequency of slopes from the canal to marsh for simulated  
actual conditions and a user-defined hydrograph for the aggregated  
Q4 control-structure flows, Arthur R. Marshall Loxahatchee National  
Wildlife Refuge, Florida .....................................................................................................39



vi

Tables
	 1.  Flow, water level, precipitation, and evapotranspiration stations used in the  

model development.......................................................................................................................9
	 2.  Water-quality sampling sites used in the model development............................................11
	 3.  Count, minimum, maximum, mean, standard deviations, and coefficient of  

determination of six water-level gages in the Refuge between 1995 and 2008................13
	 4.  Coefficient of determination of daily water level and average rainfall,  

1-day change in water level, and 2-day change in water level...........................................14
	 5.  Flow structure, aggregated flow group assignment, moving window average,  

and coefficient of determination between daily rainfall and flow.......................................15
	 6.  Coefficient of determination, time delay, and moving window average between  

the 1-day change in water level and rainfall and aggregated flows..................................15
	 7.  Moving window averages for rainfall (RAIN1 and RAIN2), evapotranspiration  

(ET), and total flow (TOTQ-in 1 and TOTQ-in 2) inputs for six linear water-level  
models along with the slope, y-intercept, and coefficient of determination.....................21

	 8.  Water-level error correction model performance statistics................................................24
	 9.  Statistics for final water-level simulations..............................................................................24
	 10.  Model performance statistics for the static and dynamic specific conductance  

and total phosphorus models....................................................................................................25
	 11.  Model performance statistics for the specific conductance and total  

phosphorus models used for trend analysis...........................................................................30

Conversion Factors and Datums

Multiply By To obtain

Length

inch 2.54 centimeter (cm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

acre 4,047 square meter (m2)
acre 0.4047 hectare (ha)
square mile (mi2) 259.0 hectare (ha)
square mile (mi2)  2.590 square kilometer (km2) 

Flow rate

cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
°F = (1.8 × °C) + 32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C = (°F – 32) / 1.8

Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 
(NGVD 29). 

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). 

Elevation, as used in this report, refers to distance above the vertical datum.



vii

Acronyms and Abbreviations Used in this Report
AI			   artificial intelligence

ANN			   artificial neural network

BEP			   back error propagation

CERP			   Comprehensive Everglades Restoration Plan

CRADA		  Cooperative Research and Development Agreement 

DSS			   decision support system

EVPA			   Everglades Protection Area

GH			   gage height

GUI			   graphical user interface

LOX			   water-quality sampling sites in the EVPA monitoring network

LOXANN DSS 	 Loxahatchee Artificial Neural Network Decision Support System

ME			   mean error

MS			   Microsoft

MSE			   mean square error

NWIS			  National Water Information System 

OLS			   ordinary least squares

PME			   percent model error

Q			   flow

Refuge		  Arthur R. Marshall Loxahatchee Wildlife Refuge 

RMSE			  root mean square error

R2			   coefficient of determination

SC			   specific conductance

SFWMD		 South Florida Water Management District

SIANN		  Spatially Interpolating Artificial Neural Network

SSE			   sum of square error

STA			   Stormwater Treatment Area

TP			   total phosphorus

USACE		  U.S. Army Corps of Engineers

USFWS		  U.S. Fish and Wildlife Service

USGS			   U.S. Geological Survey

UTM			   Universal Transverse Mercator

WL			   water level

XYZ			   District transect water quality monitoring network

3DVis			   three-dimensional visualization





Analysis and Simulation of Water-Level,  
Specific Conductance, and Total Phosphorus  
Dynamics of the Loxahatchee National Wildlife Refuge, 
Florida, 1995–2006

By Paul A. Conrads1 and Edwin A. Roehl, Jr.2

Abstract 
The Arthur R. Marshall Loxahatchee Wildlife Refuge 

(Refuge) was established in 1951 through a license agreement 
between the South Florida Water Management District and 
the U.S. Fish and Wildlife Service (USFWS) as part of the 
Migratory Bird Conservation Act. Under the license agree-
ment, the State of Florida owns the land of the Refuge and 
the USFWS manages the land. Fifty-seven miles of levees 
and borrow canals surround the Refuge. Water in the canals 
surrounding the marsh is controlled by inflows and outflows 
through control structures. The transport of canal water with 
higher specific conductance and nutrient concentrations to 
the interior marsh has the potential to alter critical ecosystem 
functions of the marsh. 

Data-mining techniques were applied to 12 years 
(1995–2006) of historical data to systematically synthesize 
and analyze the dataset to enhance the understanding of the 
hydrology and water quality of the Refuge. From the analysis, 
empirical models, including artificial neural network (ANN) 
models, were developed to answer critical questions related 
to the relative effects of controlled releases, precipitation, and 
meteorological forcing on water levels, specific conductance, 
and phosphorous concentrations of the interior marsh. Data 
mining is a powerful tool for converting large databases 
into information to solve complex problems resulting from 
large numbers of explanatory variables or poorly understood 
process physics. For the application of the linear regression 
and ANN models to the Refuge, data-mining methods were 
applied to maximize the information content in the raw data. 
Signal processing techniques used in the data analysis and 
model development included signal decomposition, digital 

filtering, time derivatives, time delays, and running averages. 
Inputs to the empirical models included time series, or signals, 
of inflows and outflows from the control structures, precipita-
tion, and evapotranspiration. For a complex hydrologic system 
like the Refuge, the statistical accuracy of the models and 
predictive capability were good. The water-level models have 
coefficient of determination (R2) values ranging from 0.90 to 
0.98. The R2 for the specific conductance model is 0.82, and 
the R2 for the total phosphorus model is 0.51. The accuracy of 
the models was attributable to the quantity and quality of the 
available data. 

To make the models directly available to all stakeholders, 
an easy-to-use decision support system (DSS) called the 
Loxahatchee Artificial Neural Network Model (LOXANN) 
DSS was developed as a spreadsheet application that 
integrates the historical database, linear regression and ANN 
models, model controls, streaming graphics, and model output. 
The LOXANN DSS allows Refuge managers and other 
users to easily execute the water level, specific conductance, 
and phosphorous models to evaluate various water-resource 
management scenarios. The user is able to choose from three 
options in setting the control-structure flows: as a percentage 
of historical flow, as a constant flow, or as a user-defined 
hydrograph. Output from the LOXANN DSS includes tabular 
time series of predictions of the measured data and predictions 
of the user-specified conditions. A three-dimensional visual-
ization routine also was developed that displays longitudinal 
specific conductance conditions. 

Two scenarios were simulated with the LOXANN DSS. 
One scenario increased the historical flows at four control 
structures by 40 percent. The second scenario used a user-
defined hydrograph to set the outflow from the Refuge to the 
weekly average inflow to the Refuge delayed by 2 days. Both 
scenarios decreased the potential of canal water intruding into 
the marsh by decreasing the slope of the water level between 
the canals and the marsh.

1 U.S. Geological Survey, South Carolina Water Science Center, 
Columbia, SC.

2 Advanced Data Mining, LLC, Greenville, SC.
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Introduction
The Arthur R. Marshall Loxahatchee National Wildlife 

Refuge (Refuge) is the last of the soft-water ecological 
systems in the Everglades. “Soft-water” systems have low 
calcium or magnesium ions as compared to “hard water” 
systems with higher concentrations of calcium or magnesium. 
Historically, the ecosystem was driven by precipitation inputs 
that were low in specific conductance and nutrients (fig. 1). 
Fifty-seven miles of levees and borrow canals surround the 
Refuge and the water in the canals have higher concentrations 
of calcium and magnesium ion compared to the Refuge 
water. The banks of the canal by the interior marsh are not 
continuous, with openings of various sizes where marsh water 
exchanges with water from the canals. With controlled flow 
releases into and out of the canals that surround the Refuge, 
the transport of water from the canals with higher specific 
conductance (an indirect measurement of ionic concentration 
such as calcium and magnesium) and nutrient concentration 
has the potential to alter critical ecosystem functions of 
the interior marsh (fig. 2). With potential alteration of flow 
patterns to accommodate the restoration of the Everglades, the 
Refuge could be affected not only by changes in the timing 
and frequency of flows releases into the canals but by the 
quality of the water that inundates the Refuge. 

 Hydrologic and water-quality data have been collected in 
the Refuge for many years. Data characterizing the hydrology 
of the system—inflows, outflows, precipitation, and water 
levels—have been collected since the 1950s. Data character-
izing the water quality of the system, including specific 
conductance and total phosphorus, have been collected since 
the late 1970s. New technologies in environmental monitoring 
have made it cost effective to acquire tremendous amounts of 
hydrologic and water-quality data. The monitoring networks 
supported by the Comprehensive Everglades Restoration 
Plan (CERP) record tremendous amounts of data each day, 
and the database incorporates millions of measurements that 
describe the environmental response of the system to changing 
conditions. Often these active and historical databases are 
underinterpreted and underutilized. Although these data are a 
valuable resource for understanding environmental systems, 
a thorough synthesis and analysis of the data may be lacking. 
New methodologies are available to systematically synthesize 
and analyze the dataset to answer critical questions related 
to the relative effects of controlled releases, precipitation, 
groundwater interaction, and meteorological forcing on water 
level, specific conductance, and phosphorous concentration to 
enhance the understanding of the hydrology and water quality 
of the interior marsh of the Refuge. 

The U.S. Geological Survey (USGS) entered into a Coop-
erative Research and Development Agreement (CRADA) with 

Advanced Data Mining International in 2002 to collaborate 
on applying data mining and artificial neural network (ANN) 
models to water-resources investigations. The emerging field 
of data mining addresses the issue of extracting information 
from large databases (Weiss and Indurkhya, 1998). Data 
mining is a powerful tool for converting large databases into 
information for use in solving problems that are otherwise 
imponderable because of the large numbers of explanatory 
variables or poorly understood process physics. Data-mining 
methods come from different technical fields—such as signal 
processing, statistics, artificial intelligence, and advanced 
visualization—and include methods for maximizing the 
information content of data, determining which variables 
have the strongest correlations to the problems of interest, 
and developing models that predict future outcomes. This 
knowledge encompasses both understanding of cause and 
effect relations and predicting the consequences of alternative 
actions. Data mining is used extensively in financial services, 
banking, advertising, manufacturing, and e-commerce to 
classify the behaviors of organizations and individuals and to 
predict future outcomes. 

Purpose and Scope

This report presents the results of an investigation that 
analyzed water level (gage height), specific conductance, and 
total phosphorus dynamics in the Refuge caused by changing 
inflows, outflows, precipitation, and evapotranspiration condi-
tions. In this report, the terms water level and gage height are 
used interchangeably. This report documents the development 
of the Loxahatchee Artificial Neural Network Decision 
Support System (LOXANN DSS), including examples of 
applying the LOXANN DSS to the Refuge to evaluate the 
intrusion of canal water into the marsh.

An important part of the USGS mission is to provide scien-
tific information for the effective water-resources management 
of the Nation. To assess the quantity and quality of the Nation’s 
surface-water, the USGS collects hydrologic and water-quality 
data from rivers, lakes, and estuaries by using standardized 
methods and maintains the data from these stations in a national 
database. Often these databases are underutilized and under-
interpreted for addressing contemporary hydrologic issues. The 
techniques presented in this report demonstrate how valuable 
information can be extracted from existing disparate databases 
to assist local, State, and Federal agencies understand and 
manage complex hydrologic systems. The application of 
data-mining techniques, including ANN models, to the Refuge 
demonstrates how empirical models of complex hydrologic 
systems can be developed, disparate databases and models can 
be integrated, and study results can easily be disseminated to 
meet the needs of a broad range of end users.
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Description of the Study Area

Historically, the area of the present day Refuge was 
part of an uninterrupted wetland that extended from Lake 
Okeechobee and flowed to the southwestern tip of Florida 
(Richardson and others, 1990; fig. 1). Beginning in the mid 
1800s, drainage activities began to convert the wetlands 
for agriculture and urban development. In the 1940s, the 
U.S. Army Corps of Engineers (USACE) constructed Water 
Conservation Areas 1, 2, and 3 to regulate water for the 
increasing population and agricultural needs of South Florida 
through a series of levees and canals (fig. 2). In general, the 
Water Conservation Areas store water during the wet season 
and supply water during the dry season.

The 143,238-acre Loxahatchee National Wildlife Refuge 
(Water Conservation Area 1) was established in 1951 through 
a license agreement between the South Florida Water Manage
ment District (SFWMD) and the U.S. Fish and Wildlife 
Service (USFWS) as part of the Migratory Bird Conservation 
Act (U.S. Fish and Wildlife Service, 2000). Under the license 
agreement, the State of Florida owns the land of the Refuge 
and the USFWS manages the land. Water in the Refuge is 
controlled by inflows and outflows through control structures 
to the 57 miles of canals that surround the Refuge (fig. 3). 
The eastern boundary of the refuge is the L-40 canal, and the 
western boundary of the Refuge is formed by the L-7 canal to 
the northwest and the L-39 canal (also known as the Hillsboro 
Canal) to the southwest. Land use surrounding the Refuge 
varies with the Everglades Agricultural Area to the northwest, 
urban areas to the east, and the Water Conservation Areas of the 
Everglades to the south and southwest. In 1986, the name of the 
Refuge was changed to A.R.M. Loxahatchee National Wildlife 
Refuge to honor the local conservationist Arthur R. Marshall. 

Although the Refuge is regulated hydrologically, it 
is considered a “unique remnant which still functions as a 
northern refuge for species of the Everglades ecosystem” 
(Richardson and others, 1990). The limestone bottom of the 
freshwater marsh of the Refuge is overlain with peat as much 
as 12 feet thick, and the approximate land-elevation gradient 
is 5 feet from north to south (U.S. Fish and Wildlife Service, 
2007a). Richardson and others (1990) describes the interior of 
the Refuge as a “complex mosaic of wetland communities that 
grade from wetter areas such as sloughs and wet prairies, to 
sawgrass, brush, and finally tree islands occurring at the drier 
end of the scale (fig. 4).” The plant community of the Refuge 
developed under nutrient-poor conditions and was maintained 
with a continuation of low nutrient concentrations (Walker, 
1995). A change in the nutrient-poor conditions of the marsh 
may adversely affect the plant community structure.

Figure 3.  Water conservation areas, stormwater treatment 
areas, and boundary canals near the Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida.
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Figure 4.  The four major plant communities of the Arthur R. Marshall Loxahatchee National Wildlife Refuge, 
Florida (modified from Richardson and others, 1990).
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Figure 4.  The four major plant communities of the Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida 
(modified from Richardson and others, 1990).
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Historically, the major sources of water to the area of the 
Refuge were precipitation and sheetflow from the wetlands 
with a low nutrient load to the system. With the development 
of agricultural, suburban, and urban areas, and the channel
ization of flow to and around the Refuge, the nutrient load, 
especially phosphorus, increased substantially (greater than 
100 parts per billion [ppb]; Walker, 1995). In 1994, the Florida 
legislature passed the Everglades Forever Act with one of 
its goals being the reduction of phosphorus concentrations 
in the Everglades to less than 50 ppb with the ultimate goal 
of reducing concentrations to less than 10 ppb. The Act 
provided funding for the construction of stormwater treatment 
areas (STAs) to reduce the phosphorus load to the Water 
Conservation Areas and Everglades National Park (fig. 2). 
Stormwater treatment areas 1E and 1W were constructed to 
reduce excess nutrient loads to the Refuge (fig. 3). The STAs 
are large (greater than 6,000 acres) constructed wetlands with 
a series of cells with varying hydraulic characteristics, aquatic 
plants, and periphyton mats that uptake phosphorus from 
inflow from the Everglades Agricultural Area before releasing 
the water to the Refuge. 

Currently, the major sources of water to the Refuge are 
rainfall (56 percent), the S-5A pump station (40 percent), and 
the ACME-1 and ACME-2 pump stations (4 percent) (U.S. Fish 
and Wildlife Service, 2007a). Of all the water pumped into the 
Refuge, approximately 91 percent is drained from the Ever-
glades Agricultural Area, and 9 percent is from agricultural and 
urban developed lands located east of the Refuge (U.S. Fish 
and Wildlife Service, 2007a). The water level in the canals is 
managed through a cooperative agreement among the USACE, 
SFWMD, and USFWS, referred to as a Water Regulation 
Schedule (U.S. Fish and Wildlife Service, 2007a; fig. 5), to 
meet the needs of the Refuge and its downstream uses. The 
current schedule was implemented in 1995 and designed to 

(1) maintain the health of the Refuge vegetation types by 
flooding all wetlands during the summer and fall; (2) enhance 
feeding opportunities for waterfowl and wading birds by low-
ering water levels in the spring so that water is concentrated in 
sloughs and shallow ponds during nesting season; (3) maintain 
water storage capacity in the Refuge during the hurricane 
season; (4) store water for irrigating nearby cropland during 
the fall, winter, and early spring; and (5) prevent saltwater 
intrusion into the Biscayne aquifer by storing water for release 
into coastal canal systems during the fall, winter, and spring 
(U.S. Fish and Wildlife Service, 2000). 

Previous Studies
Numerous ecological and hydrologic studies have been 

conducted to support the management of the Refuge and 
the resulting changes of the water-level and water-quality 
dynamics of the canals and marshes of the Refuge. Many of 
the plant ecology studies have focused on the characterization 
of the plant communities and how these communities respond 
to changing soil pore-water quantity and quality. Many of 
the hydrodynamic and water-quality modeling studies have 
focused on developing simulation models to estimate water 
level and water quality in the canals and marshes. These 
models have been used to evaluate various hydrologic 
scenarios and their effect on plant community dynamics, 
water-regulation schedules, and alternative water management. 
A thorough summary of hydrodynamic and water-quality 
models applied to the Everglades in general and the Refuge 
in particular can be found in Arceneaux and others (2007). 
Additional information on model development funded by the 
Refuge can be found in the annual reports of their Enhanced 
Monitoring and Modeling Program (U.S. Fish and Wildlife 
Service, 2007a, 2007b, and 2009).

Figure 5.  Water regulation schedule for Water Conservation Area 1, Arthur R. Marshall Loxaxatchee 
National Wildlife Refuge (modified from U.S. Fish and Wildlife Service, 2000; see figure 2 for location). 
The schedule was established in May 1995 and is administered by the U.S. Army Corps of Engineers. 
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Approach

The emerging field of data mining addresses the issue 
of extracting information from large databases. Data mining 
is composed of several technologies that include signal 
processing, advanced statistics, multidimensional visuali
zation, chaos theory, and machine learning. Machine learning 
is a field of artificial intelligence in which computer programs 
are developed that automatically learn cause-and-effect 
relations from example cases and data. For numerical data, 
commonly used learning methods include ANNs, genetic 
algorithms, multivariate adaptive regression splines, and 
partial and ordinary least squares. 

A number of previous studies by the authors and others 
have used data mining to predict hydrodynamic and water-
quality behaviors in the Beaufort, Cooper, Savannah, and 
Waccamaw River estuaries of South Carolina and Georgia 
(Roehl and others, 2000; Conrads and others, 2003; Conrads 
and others, 2006; and Conrads and Roehl, 2007) and stream 
temperatures in western Oregon (Risley and others, 2003). 
Results from the previously developed ANN-based models 
demonstrate that ANN models, combined with data-mining 
techniques, are an effective approach for simulating complex 
hydrologic systems. 

The ultimate goal of this investigation was to produce an 
effective model to simulate water level, specific conductance, 
and total phosphorous for a given set of hydrologic conditions. 
The variability of water levels and water quality in the Refuge 
is a result of many factors, including inflows and outflows to 
the canals, precipitation, evapotranspiration, and groundwater 
losses. The approach taken uses all available flow, water-level, 
specific conductance, and total phosphorous measurements 
from the individual gages and sampling sites since the water-
quality sampling networks were begun in 1995. The modeling 
approach uses correlation functions that were synthesized 
directly from data to predict how water level, specific con-
ductance, and total phosphorus at the measurement locations 
respond to changing precipitation, evapotranspiration, inflow, 
and outflow conditions. In order to simulate the dynamic 
response of water levels and water quality, empirical models 
were developed to predict water level, specific conductance, 
and phosphorus for selected gages throughout the Refuge. 
Extensive continuous hydrologic datasets as well as data from 
extensive periodic sampling networks were available for the 
Refuge. Empirical water-level, specific conductance, and total 
phosphorus models were developed directly from these data 
by using data-mining techniques and ANN models. 

The application of data-mining techniques to build 
empirical models to simulate the water levels, specific 
conductance, and total phosphorus was undertaken in three 
phases: (1) obtaining and evaluating the suitability of the 
hydrologic and water-quality data for developing empirical 
models; (2) developing models to simulate the water level at 
six streamgaging stations, specific conductance at 25 sampling 
locations, and total phosphorus at 14 sampling locations; and 
(3) developing a DSS that integrates historical databases, 

model controls, and model output into a spreadsheet applica-
tion with a graphical user interface that allows the user to 
simulate scenarios of interest. 

Data-Collection Networks
Many resource entities have collected data in the Refuge, 

including the USFWS, USGS, SFWMD, and local colleges 
and universities. Continuous hydrologic and meteorological 
data of water level, flow, precipitation, and evapotranspiration 
were collected in addition to water-quality sampling data 
of specific conductance and total phosphorus from various 
databases to build, train, and test the linear regression and 
ANN models for the LOXANN DSS. Descriptions and 
quality-assurance information of the available data-collection 
networks for the Refuge for the period 1995–2004 can be 
found in Meselhe and others (2005). Summaries and analyses 
of data collected by the Refuge can be found in the annual 
reports for its Enhanced Monitoring and Modeling Program 
(U.S. Fish and Wildlife Service 2007a, 2007b, and 2009). 

The ideal dataset for developing empirical models 
for the Refuge would cover a large range of historical and 
contemporary climatic and operational conditions and have 
the temporal and spatial coverage to be able to characterize the 
hydrologic and water-quality dynamics throughout the Refuge. 
Typically, continuous data, such as water level or flow, are 
temporally dense (15-minute to 60-minute recording intervals) 
but can be spatially sparse. Conversely, water-quality sampling 
data (typically weekly or monthly sampling intervals) are 
usually more temporally sparse but often have a denser spatial 
coverage than continuous data. Extensive water-quality 
sampling began in 1995, and the period of record from 1995 
to 2006 provides the most concurrent continuous hydrologic 
data, including data from the water-quality sampling networks. 
A description of the datasets used in the development of 
LOXANN DSS follows.

Continuous daily hydrologic data included inflows, 
outflows, water levels, precipitation, and evapotranspiration 
(fig. 6; table 1). The flow data represent the 19 hydrologic 
control structures around the perimeter canal and were charac-
terized by their direction of flow—into or out of the Refuge or 
bidirectionally. Water-level data were collected from six USGS 
streamgaging stations; one of the gaging stations was proximal 
to the canal (site 1-8C) and the other five stations were located 
in the interior marsh. Streamgaging stations north and south 
were installed in 2001 and did not cover the period of record. 
Precipitation and weather data were recorded at 16 stations: 
1 was in the marsh, 6 were along the canal, and 9 were outside 
of the Refuge. Evapotranspiration data were available at three 
of the weather stations. Pan evaporation data were available 
at station S5A, located on the canal at the northern tip of the 
Refuge. Evapotranspiration data were available at station 
STA1W to the northwest, and potential evapotranspiration data 
were available at station LOXWS located midway along the 
L-40 canal on the eastern side of the Refuge.
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Figure 6.  Location of weather and continuous water-level 
stations and flow-control structures, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida.

Table 1.  Flow, water level, precipitation, and evapo
transpiration stations used in the model development.

[UTM, Universal Transverse Mercator; x, easting; y, northing; NAD83,  
North American Datum 1983; STA, stormwater treatment area]

Structure Location
UTM x 

(NAD83)
UTM y 

(NAD83)

Flow data

S-5A L-7 Canal 562923.80 2951648.41

S-5AS L-40 Canal 562923.80 2951648.41

G-300 L-40 Canal 563360.30 2950824.02

G-301 L-7 Canal 561649.23 2950621.87

G-310 L-7 Canal 555156.76 2942060.02

G-251 L-7 Canal 555557.05 2942007.13

S-6 L-7 Canal 555237.83 2928059.96

S-10E L-39 Canal 555664.38 2927348.19

G-338 L-39 Canal 555293.06 2927854.37

S-10D L-39 Canal 561683.30 2918858.31

S-10C L-39 Canal 564597.91 2917008.87

S-10A L-39 Canal 568592.55 2915744.44

S-39 L-39 Canal 570050.07 2915284.57

S-362 L-40 Canal 568081.26 2944903.95

ACME #1 L-40 Canal 570829.38 2943161.99

ACME #2 L-40 Canal 572508.66 2941521.83

G-94C L-40 Canal 576431.10 2935866.25

G-94B L-40 Canal 577582.06 2929275.93

G-94A L-40 Canal 576780.29 2924092.71

Water level

Site 1-7 Central marsh 565061.88 2933415.39

Site 1-8T Central marsh 577474.80 2931309.20

Site 1-8C Marsh site  
near canal

575029.51 2932854.66

Site 1-9 Central marsh 570077.53 2927288.80

North Northern marsh 564356.19 2941626.14

South Southern marsh 565752.41 2922897.27

Precipitation

S-5A L-7 Canal 562923.80 2951648.41

S-6 L-7 Canal 555237.83 2928059.96

S-39 L-39 Canal 570050.07 2915284.57

LOXWS L-40 Canal 577503.46 2931177.16

Gage 6 Near L-40 Canal 57365.10 2908757.60

Gage 8 Near L-40 Canal 570877.40 2943262.60

WCA1ME Central marsh 568748.3 2932450.2

Evapotranspiration data

STA1W STA-1W 556983.50 2946136.81
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Specific conductance and total phosphorus data were 
obtained from three sampling networks maintained by 
SFWMD—the Everglades Protection Area (EVPA) water-
quality monitoring sites, the District Transects monitoring 
network, or “XYZ” data network (fig. 7; table 2), and from 
the hydraulic structures. Fourteen sampling sites in the EVPA 
network (also referred to as the “LOX” sites) were used to 
monitor the physical, chemical, and biological properties. The 
sampling interval generally was monthly but was variable 
depending on hydrologic conditions and site classification. 
From 1995 to 2008, at least 65 samples were collected from 
each site. The XYZ network was made up of 11 sampling sites 
along the southwestern portion of the Refuge and was estab-
lished to measure the nutrient gradient from the L-39 canal 
into the marsh. Sampling of the XYZ sites was irregular. From 
1995 to 2006, at least 68 samples were collected from each 
site. Water-quality sampling data were available for 15 of the 
hydraulic control structures in the Refuge. Similar to the 
other water-quality networks, the structures were sampled 
irregularly. From 1995 to 2006, the number of samples varied 
from 3 to 597, and more than 100 samples were collected at 
many of the structures.

Data Preparation

Because of the large number of hydrologic inputs to the 
Refuge, much of the flow and precipitation time-series data 
were aggregated to facilitate the analysis and modeling of 
the data. The flow data from the 19 control structures were 
aggregated into six flow groups (fig. 8). Aggregating data 
has the advantages of reducing the number of variables and 
diminishing spurious correlations between large and small 
flows from nearby hydraulic structures. Rainfall data were 
highly temporally and spatially variable and none of the 
precipitation time-series records were complete. A composite 
daily rainfall time-series record was computed by averaging 
the data from the six rain gages closest to the Refuge. If data 
from one or more of the gages were missing, the average was 
computed for the remaining gages. In addition, the rainfall 
values were converted to flow units for the Refuge. Assuming 
a Refuge area of 221 square miles, daily rainfall in inches was 
converted to cubic feet per second. 

Limitations of the Historical Datasets

As with any modeling effort, empirical or deterministic, 
the accuracy of the model is dependent on the quality and 
quantity of the data and range of measured conditions used 
for training or calibrating the model. The available period of 

record for the hydrologic and water-quality data-collection 
networks can limit the range of water-level and water-quality 
conditions that the model can accurately simulate. Although 
data were available from the networks in the Refuge from the 
mid-1990s, the data were not always of a sufficient quality 
to use for developing empirical models. Environmental 
monitoring technology has changed substantially over the last 
15 years. Periods of missing continuous data, especially flow 
and water-level data, limit the periods when the net flow into 
and out of the Refuge is known and when accurate models can 
be developed. Water-quality monitoring networks typically 
are established to meet regulatory compliance requirements 
and often provide sufficient long-term data to evaluate the 
status and trends of water-quality constituents of concern. 
Unfortunately, irregularly sampled water-quality data usually 
do not adequately capture the dynamic variability of complex 
systems, which is needed to develop accurate dynamic models. 
Specific limitations with the data collected for the Refuge to 
develop the LOXANN DSS are as follows.

•	 The flow data for control structures G-94A, G-94B, 
and G-94C (aggregated into Q5) were missing from 
January 1, 1996, until April 15, 2000. The data that 
were available indicate that at times these flow-control 
structures substantially affect the net flow; therefore, 
the data used to develop models were limited to the 
period after April 15, 2000.

•	 The south and north water-level stations were  
established in 2001. The shorter period of record, as 
compared to the other water-level sites, limited the  
data available for developing water-level models for  
all the sites.

•	 The temporal record for the flows, gage height, specific 
conductance, and total phosphorus was incomplete, 
and the specific conductance and total phosphorus 
measurements were particularly sparse. The water-
quality sampling occurred on a small percentage of the 
days for which there were corresponding hydrologic 
data from 1995 to 2006. Of the 39 water-quality 
sampling sites, 32 sites had water-quality samples for 
5 percent or less of the days. The site with the greatest 
number of water-quality samples, control structure 
S6, only had concurrent samples with hydrologic data 
for 21 percent of the days. In addition, many of the 
samples were not measured on the same day. This type 
of low frequency, nonconcurrent sampling generally 
is insufficient to represent the dynamics of a complex 
system. Data from the control structures typically 
would be used to provide boundary conditions for the 
water-quality variability at interior sampling sites.
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Figure 7.  Location of District transect water-quality 
monitoring network (XYZ) and the Everglades Protection 
Area (EVPA) network, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida.
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Figure 7.  Location of District transect water-quality monitoring
network (XYZ) and the Everglades Protection Area (EVPA) network,
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida.
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Table 2.  Water-quality sampling sites used in the model 
development.

[UTM, Universal Transverse Mercator;  x, easting; y, northing; NAD83,  
North American Datum 1983]

Site
UTM x  

(NAD83)
UTM y  

(NAD83)

 Everglades Protection Area

LOX10 557696.533 2934097.335
LOX11 570618.481 2927057.254
LOX12 561819.067 2923516.529
LOX13 569763.753 2922876.125
LOX14 575259.851 2920565.147
LOX15 564635.159 2918366.964
LOX16 569209.115 2917240.300
LOX3 564139.639 2941524.321
LOX4 570207.126 2942378.775
LOX5 563950.427 2937560.441
LOX6 576727.276 2931944.920
LOX7 572077.711 2933267.939
LOX8 565964.015 2933883.533
LOX9 561072.830 2934147.524

South Florida Water Management District transect (XYZ)

X0 555310.239 2929595.537
X1 555598.128 2929630.011
X2 556387.674 2930041.048
X3 557377.266 2929612.387
X4 559509.952 2930085.087
Y4 559573.425 2927366.295
Z1 555808.002 2927668.322
Z2 557023.968 2927256.124
Z3 558953.035 2926574.838
Z4 560964.178 2925240.763

Control structures

S-5A 562923.797 2951648.413
G-300 563360.301 2950824.018
G-301 561649.234 2950621.874
G-310 555156.761 2942060.022
S-6 555237.829 2928059.963
S-10E 555664.380 2927348.193
S-10D 561683.299 2918858.313
S-10C 564597.907 2917008.867
S-10A 568592.553 2915744.442
S-39 570050.073 2915284.569
ACME #1 570829.375 2943161.990
ACME #2 572508.664 2941521.829
G-94C 576431.096 2935866.250
G-94B 577582.057 2929275.929
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Characterization of Marsh and Canal 
Water Levels 

The primary sources for water levels in the Refuge marsh 
are precipitation and inflow and outflows from the control 
structures (U.S. Fish and Wildlife Service, 2000). The water 
levels at the six marsh sites are highly correlated and show 
similar dynamic responses to each other (fig. 9; table 3). Note 
that the length of record for stations north and south was much 
shorter than for the other four stations. Site 1-8C, the gage 
closest to a canal, shows the greatest dynamic variability. 
Three marsh gages, site 1-8T, site 1-9, and south, were highly 
correlated with coefficients of determinations, R2s, from 
0.94 to 0.97 (table 3). The high correlation is due to their 
proximity to canals. The relatively lower correlated stations, 
sites 1-8C and 1-7 (R2 of 0.77), reflect the dampening effect of 
the water-level variability from the canal to the interior marsh. 
The lowest correlated stations, north and south (R2 of 0.73), 
reflect the gradient of the drier northern section and wetter 
southern section of the Refuge. 

Correlation analyses between the inputs (rainfall and 
control-structure flows) and response variable (water level) was 
performed to understand how the sources of water dynamically 
affect water levels. The timing effects that rainfall and flow 
inputs have on the water levels was analyzed by computing 
time delays, moving window averages, and time derivatives 
of rainfall, control-structure flows, and water levels. Although 
rainfall is a major source of water for the Refuge, the 
correlation, measured by R2, between daily rainfall and daily 
water level is very low—less than 0.01 at the six water-level 
stations (table 4). The water level in the Refuge is a result 
of inputs from many sources over many temporal scales. To 
compare rainfall and water levels on a similar temporal scale, 
the change in daily water level and the daily rainfall, the 
correlations increased the R2 for the five interior water-level
stations to more than 0.20 and the canal station to 0.14 
(table 4; fig. 10). Using a 2-day average rainfall instead of a 
daily rainfall further increased the correlation with the 1-day 
change in water level to between 0.34 and 0.59.

Rainfall not only has a short-term effect on water level 
as seen in the correlation with 1-day and 2-day changes in 
water levels, but also has an effect on long-term water levels. 
The cycles of the dry and wet seasons in South Florida are 
characterized by reduced rainfall between March and July 
and increased rainfall between August and February. This 
cycle also is seen in the seasonal water-level hydrograph with 
minimum water levels occurring in the late spring/summer 
(May or June) and maximum water levels occurring in the 
fall (October or November). The long-term dynamic between 
rainfall and water level can be seen by correlating moving 
window averages of rainfall with daily water levels. As the 
averaging window increases for rainfall, the correlation 
to water level increases until a maximum is reached. The 
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Figure 8.  Flow-control structures and aggregation of structures
(magenta) used in the analysis and model development, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida.
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Figure 8.  Flow-control structures and aggregation of 
structures (magenta) used in the analysis and model 
development, Arthur R. Marshall Loxahatchee National 
Wildlife Refuge, Florida.
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Figure 9.  Daily water levels for six continuous streamgaging stations, Arthur R. Marshall Loxahatchee National 
Wildlife Refuge, Florida, January 1995 to December 2004. See figure 6 for site locations.
Figure 9.  Daily water levels for six continuous streamgaging stations, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida, January 1995 to December 2004. See figure 6 for site locations.

Table 3.  Count, minimum, maximum, mean, standard deviations, and coefficient of determination of six water-level gages in the 
Refuge between 1995 and 2008.

Stream-
gaging 
station

Count
Minimum Maximum Mean

Standard  
deviation

Coefficient of determination

Feet Site 1-7 Site 1-8T Site 1-8C Site 1-9 North South

Site 1-7 3,653 14.88 18.12 16.55 0.47 1.00 0.85 0.77 0.91 0.91 0.87

Site 1-8T 3,646 13.94 18.03 16.26 0.70 0.85 1.00 0.95 0.94 0.78 0.97

Site 1-8C 3,565 12.06 18.19 16.31 0.87 0.77 0.95 1.00 0.85 0.79 0.92

Site 1-9 3,653 14.78 17.90 16.35 0.51 0.91 0.94 0.85 1.00 0.81 0.95

North 1,261 15.67 18.00 16.73 0.38 0.91 0.78 0.79 0.81 1.00 0.73

South 1,304 14.23 17.27 16.10 0.72 0.87 0.97 0.92 0.95 0.73 1.00 
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220-day moving window average rainfall is plotted with the 
daily water level for the period 1995–2004 in figure 11. The 
R2 between the two time series is 0.66. The transformation of 
the rainfall time series captures the majority of the interannual 
water-level variability between the dry and wet seasons.

A similar analysis can be performed for the control 
structures to evaluate correlation between flow releases (both 
inflows and outflows) and rainfall and the correlation of flow 
releases and water levels. The correlation between the optimal 

moving window average (highest R2) of flow at control 
structures and rainfall is presented in table 5. Only control 
structures with R2 greater than 0.10 are listed. The R2s and 
moving window sizes in table 5 provide some insight to the 
operations of the control structures. The control structures with 
the higher R2s have a higher response to recent rainfall inputs, 
and their operations are more connected with rainfall than the 
structures with lower R2s that are operated with less regard for 
recent rainfall conditions. The structures with moving window 
average sizes less than 8 days are inflow control structures. 
The structures with higher moving window average sizes 
greater than 15 days are outflow structures. The difference in 
these moving window sizes indicates that water from rainfall 
events moves into the Refuge faster than water that is released 
from control structures in the Refuge.

The correlation among the control-structure flows, 
rainfall, and water levels can be analyzed to show a relative 
proportioning of the influence of flows and rainfall on water 
levels. The aggregated flows (fig. 8) and rainfall R2s, time 
delays, and moving window sizes are presented in table 6. 
The use of time derivatives is a common analytical method 
for analyzing the dynamics of a system. Often time delays 
exist between when an event is measured and the time that 
the response is observed in a system. Modeling a system is 
more complicated when two events of interest, a cause and an 
effect, do not occur simultaneously. The time between cause 
and effect is called the “time delay” or “delay.” Each input 
variable of a model has its own delay. Determining the correct 
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Figure 10.  Average daily rainfall and the 1-day change in water level at site 1-7, and daily water level 
at site 1-7, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, January 1995 to  
December 2004. See figure 6 for site location.

Table 4.  Coefficient of determination of daily water level and 
average rainfall, 1-day change in water level, and 2-day change 
in water level.

[R2, coefficient of determination]

Stream-
gaging 
station

R2 of daily 
water level 
 and daily  

rainfall

R2 of 1-day 
change in  

water level  
and daily 
 rainfall

R2 of 1-day 
change in  

water level  
and 2-day  

average rainfall

Site 1-7 0.00 0.27 0.59

Site 1-8T 0.00 0.21 0.46

Site 1-8C 0.00 0.14 0.34

Site 1-9 0.00 0.25 0.54

North 0.00 0.26 0.46

South 0.00 0.22 0.49
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time delays for pulses and the system response is critical to 
accurately simulate a dynamic system. For example, a control 
structure may release a pulse of water and the water levels at 
a station in a canal may respond immediately (a time delay 
of zero) or there may be a 1- or 2-day delay in the response 
to water levels at an interior marsh station (time delays of 
one and two, respectively). The time delays are computed by 
incrementally lagging the input time series and determining 
the peak correlation with the response variable. Because of the 
shorter period of record for stations north and south, they are 
not included in this correlation analysis.

The 1-day change in water level at the two interior marsh 
sites, sites 1-7 and 1-9, are more correlated with rainfall than 
the site 1-8T and site 1-8C stations (fig. 6). The four water-
level stations are most responsive to the aggregated Q1 and 
Q3 flows with a 1-day time delay (fig. 8). The stations have 
a 2-day time delay for the Q2 flows. All of the stations have 
negative time delays for the Q4 flows, which are flows out of 
the system. Site 1-8C is fastest to respond to releases with a 
time delay of 1 day. Site 1-7 is the slowest station to respond 
to releases from the canal with a 7-day delay.

Table 5.  Flow structure, aggregated flow group assignment, 
moving window average, and coefficient of determination 
between daily rainfall and flow.

[MWA, moving window average; R2, coefficient of determination]

Structure
Aggregated  
flow group

MWA R2

G-300 Q1 4 0.15
G-301 Q1 5 0.12
S-6 Q3 6 0.43
S-5A Q1 6 0.36
ACME #2 Q6 8 0.37
ACME #1 Q6 8 0.35
G-310 Q2 8 0.28
S-362 Q6 11 0.48
S-10A Q4 15 0.30
S-10D Q4 23 0.42
S-10C Q4 23 0.39
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Figure 11.  Two-hundred-twenty-day moving window average of rainfall and daily water level at site 1-7, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, January 1995 to December 2004. 
See figure 6 for site location.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 

Da
ily

 w
at

er
 le

ve
l, 

in
 fe

et
 a

bo
ve

N
at

io
na

l G
eo

de
tic

 V
er

tic
al

 D
at

um
 o

f 1
92

9

Figure 11.  Two-hundred-twenty-day moving window average of rainfall and daily water level at site 1-7, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, January 1995 to December 2004. See 
figure 6 for site location.

Table 6.  Coefficient of determination, time delay, and moving window average between the 1-day change in water level and rainfall 
and aggregated flows.

[R2, coefficient of determination; τ, time delay; MWA, moving window average; Q#, aggregated flow assignment]

Stream-
gaging 
station

Rainfall Q1 Q2 Q3 Q4 Q5 Q6

R2 τ MWA R2 τ MWA R2 τ MWA R2 τ MWA R2 τ MWA R2 τ MWA R2 τ MWA

Site 1-7 0.59 0 2 0.23 1 1 0.05 2 1 0.24 1 1 0.02 –7 8 0.03 1 1 0.12 1 1

Site 1-8C 0.34 0 2 0.14 1 2 0.04 2 2 0.17 1 2 0.03 –1 2 0.05 0 1 0.10 0 1

Site 1-8T 0.46 0 2 0.16 1 1 0.04 2 1 0.19 1 1 0.03 –3 1 0.04 1 1 0.09 1 1

Site 1-9 0.55 0 2 0.19 1 1 0.05 2 1 0.22 1 2 0.02 –3 2 0.04 1 1 0.12 1 2
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Simulating Water Levels, Specific 
Conductance, and Total Phosphorus 

Simulating water level, specific conductance, and total 
phosphorus typically is done using dynamic deterministic 
models that incorporate the mathematical descriptions of the 
physics of the hydrodynamics and water chemistry of surface-
water systems. These one-, two-, or three-dimensional models 
often require extensive data collection and are time consuming 
to apply to hydrologic systems. Although mechanistic models 
have been the state of the practice for regulatory evaluations 
of anthropogenic effects on hydrologic systems, developments 
in the field of advanced statistics, machine learning, and data 
mining offer opportunities to develop empirical ANN models 
that are often more accurate. Conrads and Roehl (1999) 
compared the application of a deterministic model and an 
ANN model to simulate dissolved-oxygen concentrations 
for the tidally affected Cooper River in South Carolina. 
They found that the ANN models offer some important 
advantages, including faster development time, utilization 
of larger amounts of data, the incorporation of optimization 
routines, and model dissemination in spreadsheet applications. 
With the real-time streamgaging network and water-quality 
sampling network for the Refuge and the availability of large 
databases of hydrologic and water-quality data, the USGS 
and the USFWS realized an opportunity existed to develop 
an empirical model using data-mining techniques, including 
ANNs, to simulate water level, specific conductance, and total 
phosphorus in the Refuge.

Artificial Neural Networks

Models generally fall into one of two categories: deter-
ministic (or mechanistic) or empirical. Deterministic models 
are created from first-principles equations, whereas empirical 
modeling adapts generalized mathematical functions to fit a 
line or surface through data from one or more variables. The 
most common empirical approach is ordinary least squares 
(OLS), which relates variables using straight lines, planes, or 
hyper-planes, whether the actual relations are linear or not. 
Calibrating either type of model attempts to optimally synthe-
size a line or surface through the observed data. Calibrating 
models is difficult when data have substantial measurement 
error or are incomplete, or when the variables for which 
data are available provide only a partial explanation of the 
causes of variability. The principal advantages that empirical 
models, such as ANN models, have over deterministic models 
are that they can be developed much faster and are more 
accurate when the modeled systems are well characterized 
by data. Empirical models, however, are prone to problems 
when poorly applied. Overfitting and multicollinearity caused 
by correlated input variables can lead to invalid mappings 
between input and output variables (Roehl and others, 2003). 

An ANN model is a flexible mathematical structure 
capable of describing complex nonlinear relations between 
input and output datasets. The structure of ANN models is 
loosely based on the biological nervous system with intercon-
nections of neurons and synapses (Hinton, 1992). Although 
numerous types of ANN models exist, the most commonly 
used type of ANN is the multilayer perceptron (Rosenblatt, 
1958). As shown in figure 12, multilayer perceptron ANNs are 
constructed from layers of interconnected processing elements 
called neurons, each executing a simple “transfer function.” 
All input layer neurons are connected to every hidden layer 
neuron, and every hidden layer neuron is connected to every 
output neuron. Multiple hidden layers are possible, but a 
single layer is sufficient for most problems.

Typically, linear transfer functions are used to scale input 
values from the input layer to the hidden layer and generally 
fall within the range that corresponds to the most linear part 
of the s-shaped sigmoid transfer functions used from the 
hidden layer to the output layer (fig. 12). Each connection 
has a “weight” wi associated with it, which scales the output 
received by a neuron from a neuron in an antecedent layer. 
The output of a neuron is a simple combination of the values 
it receives through its input connections and their weights, and 
the neuron’s transfer function. 

An ANN is “trained” by iteratively adjusting its weights 
to minimize the error by which it maps inputs to outputs for 
a dataset composed of input/output vector pairs. Prediction 
accuracy during and after training can be measured by a 
number of metrics, including coefficient of determination 
(R2) and root mean square error (RMSE). An algorithm that 
commonly is used to train multilayer perceptron ANNs is 
the back error propagation training algorithm (Rumelhart 
and others, 1986). Jensen (1994) describes the details of the 
multilayer perceptron ANN, the type of ANN used in this 
study. Multilayer perceptron ANNs can synthesize functions 
to fit high-dimension, nonlinear multivariate data. Devine and 
others (2003) and Conrads and Roehl (2005) describe their 
use of multilayer perceptron ANNs in multiple applications to 
model and control combined manmade and natural systems, 
including disinfection byproduct formation, industrial air 
emissions monitoring, and surface-water systems affected by 
point and nonpoint-source pollution. 

Experimentation with a number of ANN model 
architectural and training parameters typically is part of the 
modeling process. For correlation analysis or predictive 
modeling applications, a number of candidate ANN models 
are trained and evaluated for their statistical accuracy and 
their representation of process physics. Interactions between 
combinations of variables also are considered along with the 
selection of the training dataset from the overall dataset. For 
models where there is a large dataset with good representation 
of the range of historical behaviors, a small percentage of 
the dataset (10–25 percent) may be selected for the training 
dataset. For problems with limited data, a larger percentage 
of the dataset (75–100 percent) may be used in the training 
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dataset. Finally, a satisfactory model can be exported for end-
user deployment. In general, a high-quality predictive model 
can be obtained when

•	 The data ranges are well distributed throughout the 
stated space of interest,

•	 The input variables selected by the modeler share 
“mutual information” about the output variables,

•	 The form “prescribed” or “synthesized” for the model 
used to “map” (correlate) input variables to output 
variables is a good one. Techniques such as OLS and 
physics-based finite-difference models prescribe the 
functional form of the model’s fit of the calibration 
data. Machine-learning techniques like ANN models 
synthesize a best fit to the data.

Subdividing a complex modeling problem into sub-
problems and then addressing each is an effective means of 

achieving the best possible results. A collection of submodels 
whose calculations are coordinated by a computer program 
constitutes a “super-model.” For the Refuge investigation, 
daily linear regression and ANN models (submodels) were 
developed for water level, specific conductance, and total 
phosphorous at either continuous gages or at sampling sites. 
These submodels were then incorporated into a super-model 
application that integrates the model controls, model database, 
and model outputs. The super-model for the project is 
LOXANN DSS. The ANN models described in this report 
were developed using the iQuestTM data-mining software3 
(Version 2.03C DM Rev31). The ANN models were deployed 
in the DSS using the Visual Basic run-time library of the 
iQuest R/TTM software. 

3 The iQuest™ software is exclusively distributed by Advanced Data Min-
ing, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044, Phone: 
(864) 201-8679, e-mail: info@advdatamining.com, http://www.advdmi.com.

Figure 12.  Multilayer perceptron artificial neural network architecture (from Conrads and Roehl, 2007).
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Development of Water-Level, Specific 
Conductance, and Total Phosphorus Models

The data described above were used to develop empirical 
process models of the Refuge and are included in LOXANN 
DSS so that the user can run long-term simulations to evaluate 
permutations of the actual historical record. The LOXANN 
DSS models predict how rainfall, evapotranspiration, and 
flows into and out of the Refuge affect water levels at 6 sites, 
specific conductance at 25 sites, and total phosphorus at 
14 sites. The water-level models are hybrid models that 
employ a linear least-squares regression and a nonlinear 
spatially interpolating ANN (SIANN) model. The specific 
conductance and total phosphorus models cascade from the 
predictions of the water-level model, but use only SIANN 
models. The overall architecture of the water-level, specific 
conductance, and total phosphorus models are shown in 
figure 13. 

Statistical Measures of Prediction Accuracy

Statistical measures of prediction accuracy were computed 
for the water-level, specific conductance, and total phosphorus 

values, and for the linear regression and SIANN models. The 
statistics for the water-level, specific conductance, and total 
phosphorus simulations capture the ability of the multistep 
modeling approaches to accurately estimate water levels at 
the streamgaging stations or specific conductance and total 
phosphorus at the XYZ and LOX sampling sites. The statistics 
for the linear regression and SIANN models (static, dynamic, 
and error correction models) document these intermediate 
models. Because several models are used, the statistics for 
the individual models may not be an indication of the quality 
of the final estimates. Ultimately, the water-level, specific 
conductance, and total phosphorus simulations should be 
evaluated by the statistics for the final simulation. 

Model accuracy typically is reported in terms of R2 
and commonly is interpreted as the “goodness of the fit” of 
a model. An alternative interpretation is one of answering 
the question, “How much information does one variable or 
a group of variables provide about the behavior of another 
variable?” For example, in the first context, R2 = 0.6 might be 
disappointing, whereas in the latter, it is merely an accounting 
of how much information is shared by the variables being 
used. The mean error and RMSE statistics provide a measure 
of the prediction accuracy of the ANN models. The mean error 
is a measure of the bias of model predictions—whether the 

Figure 13.  Water-level, specific conductance (SC), and total phosphorus (TP) model architecture. Blue 
items denote input parameters that are calculated from measured data, user-inputs, and sub-model output 
data. Green, yellow, and pink items are sub-models used to predict water level, specific conductance, and 
total phosphorus, respectively.

SCstatic 
SIANN

εSC SIANN

εGH SIANN

TPstatic 
SIANN
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Figure 13.  Water-level, specific conductance (SC), and total phosphorus (TP) model architecture. Blue 
items denote input parameters that are calculated from measured data, user-inputs, and submodel output 
data. Green, yellow, and pink items are submodels used to predict water level, specific conductance, and 
total phosphorus, respectively.
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model overpredicts or underpredicts the measured data. The 
mean error is presented as the adjustment to the simulated 
values to equal the measured values; therefore, a negative 
mean error indicates an oversimulation by the model, and a 
positive mean error indicates an underprediction by the ANN 
model. Mean errors near zero may be misleading because 
negative and positive discrepancies in the simulations can 
cancel each other. Root mean square error addresses the 
limitations of mean error by computing the magnitude, rather 
than the direction (sign) of the discrepancies. The units of the 
mean error and RMSE statistics are the same as the simulated 
variable of the model.

 The accuracy of the models, as given by RMSE, should 
be evaluated with respect to the measured range of the output 
variable. The percent model error is the ratio of the RMSE to 
the range of the output measured data. A model may have a 
low RMSE, but if the range of the output variable is small, the 
model may only be accurate for a small range of conditions 
and the model error may be a relatively large percentage of 
the model response. For example, if the RMSE for a model 
is 0.5 foot (ft) and the measured range is 0–2 ft, the percent 
model error would be 25 percent. Likewise, a model may have 
a large RMSE, but if the range of the output variable is large, 
the model error may be a relatively small percentage of the 
total model response. For example, if the RMSE for a model is 
2 ft and the measured range is 0–20 ft, the percent model error 
would be 10 percent. 

Water-Level Models
The water-level model is composed of seven submodels. 

Six of the submodels use linear regression to predict water 
levels at sites 1-7, 1-8T, 1-8C, 1-9, north, and south. The 
seventh submodel is an ANN model that corrects a portion 
of the prediction error for each of the linear regression 
submodels. The notation for water level or gage height (used 
interchangeably) variables used in the models is “GH.” The 
following steps describe the development and functions of the 
water-level submodels.

The first step is to convert model inputs into similar units. 
The daily averages of the aggregated flows Q1–Q6 in cubic feet 
per second are summed to a total flow (TOTQ, fig. 13). Total flow 
is converted into an estimated, spatially averaged daily change in 
water level in inches (TOTQ-inch) for all of the Refuge.

	 TOTQ-inch =TOTQ cubic feet per second  
	 × 86,400 seconds per day × 1 / (221 square miles)  
	 × (1/(5,280 × 5,280 square feet per square mile) )  
	 × 12 inches per foot

The second step is to create linear regression models 
for each water-level gage. A spreadsheet tool called the 
super tau tool was used to create linear statistical submodels 
(y = mx + b) that correlate rainfall (RAIN), evapotranspiration 
(ET), and total flow (TOTQ-inches) to each water-level time 
series (fig. 14). The user-controlled super tau tool computes 

Figure 14.  Screen capture of user interface of the Super Tau Tool. The middle and upper left are user controls for selecting 
water-level site, input parameters, time delays, and moving window size. The lower left are summary statistics for the 
curve fit. Plot shows the measured data (blue) and the linear fit (yellow).

Figure 14.  Screen capture of user interface of the super tau tool. The middle and upper left are user controls for selecting 
water-level site, input parameters, time delays, and moving window size. The lower left are summary statistics for the 
curve fit. Plot shows the measured data (blue) and the linear fit (yellow).
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moving window averages for rainfall, evapotranspiration, 
and flows. The different moving window averages are used 
to represent different spectral components of the forces that 
modulate water-level behavioral dynamics. This process 
transforms the raw input signal into a waveform that is more 
correlated with a water-level signal and more representative 
of the input-output behavior of the physical process. An 
example of the linear fit for site 1-7 is shown in figure 15. 
Because all of the transformed parameters (rainfall and flow) 
are in units of inches, their sum (SUMQ) can be compared 
directly to a water-level signal. The super tau tool fits SUMQ 
linearly (water level = m × SUMQ + b) and nonlinearly 
(water level = a × ln(SUMQ)).

Experimentation with different versions of the super tau 
tool indicated that it provides too many degrees of freedom, 
such that comparable curve-fit statistics can be obtained with 
significantly different input configurations, and that some 
water-level signals are better fit nonlinearly. Too many inputs 
to a model may overfit the data and result in poor predictive 
capabilities of the model. The number of inputs to the models 
was limited to decrease the degrees of freedoms and improve 
the predictive soundness of the final models. The three inputs 
to the model are evapotranspiration, rainfall, and inflows. The 
largely sinusoidal evapotranspiration time series characterizes 
seasonal and annual patterns and therefore was limited to one 
moving window average. Rainfall has a short- and long-range 
water-level response as seen in the correlations to daily 
changes in water level (fig. 10) and large moving window 
averages of rainfall and daily water levels (fig. 11). There, the 

rainfall inputs were limited to two inputs. Similar to the rainfall 
inputs, it was decided to limit the Q1– Q6 inputs to two moving 
window averages to capture the shorter and longer range water-
level responses to inflows. This effectively limited the number 
of inputs time series to five. The final water-level submodels 
were limited to only linear regressions derived from the mass 
balance of flow and rainfall (SUMQ). The residual error of 
these linear regression water-level models (εGH ) was simulated 
with a nonlinear ANN. The residual error of the water-level 
models, εGH , is calculated by subtracting a predicted value from 
a measured value. Summing the outputs of the linear and ANN 
models yields statistically higher prediction accuracy.

The process by which moving window averages were 
set is described as follows. Evapotranspiration (ET) and flows 
(Q1– Q6) were set to zero and the two rainfall (RAIN) moving 
window averages were set to maximize the R2 of the model. 
The two Q1– Q6 moving window averages were set to maxi-
mize R2. Then, the one ET moving window average was set 
to further maximize R2. After the initial setting of the moving 
window average sizes for the five input variables, some small 
adjustments to the moving window average sizes were made 
to arrive at a maximum R2. Table 7 presents the window sizes 
and statistics of the linear water-level submodels for each 
site. It should be noted that rainfall gives the spikiest signal, 
followed by control-structure flows (TOTQ), with evapotrans-
piration (ET) being largely seasonally sinusoidal. Applying a 
moving window average changes a spiky signal more than it 
does a relatively smooth signal. Figure 16 shows the residual 
error, εGH , for linear regression water-level submodels.
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Figure 15. Measured and linearly predicted daily water levels and SUMQ at site 1-7, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida, January 1995 to January 2007. A 5-inch increment is used 
for both left and right axes. See figure 6 for location.
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Figure 16.  Linear regression water-level model errors for six continuous streamgaging stations, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida, April 2000 to December 2006. See figure 6 for site locations.
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Figure 16.  Linear regression water-level model errors for six continuous streamgaging stations, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida, April 2000 to December 2006. See figure 6 for  
site locations.

Table 7.  Moving window averages for rainfall (RAIN1 and RAIN2), evapotranspiration (ET), and total flow (TOTQ-in 1 and TOTQ-in 2) 
inputs for six linear water-level models along with the slope, y-intercept, and coefficient of determination.

[MWA, moving window average; R2, coefficient of determination]

Stream-
gaging 
station

Count
RAIN1,  
MWA

RAIN2,  
MWA

ET,  
MWA

TOTQ-in 1,  
MWA

TOTQ-in 2,  
MWA

Slope Y-intercept R2

Site 1-7 2,307 262 42 11 146 1 0.663 181.64 0.839

Site 1-8T 1,705 286 82 55 206 45 0.87 172.39 0.913

Site 1-8C 2,159 286 80 42 206 8 1.182 165.78 0.815

Site 1-9 2,312 265 45 39 141 1 0.731 181.15 0.867

North 1,985 289 51 5 140 1 0.619 182.88 0.753

South 1,436 264 58 14 233 19 0.993 165.23 0.933
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The final step in simulating water levels is to create an 
error prediction model to increase the accuracy of the linear 
regression water-level models. A SIANN as described by 
Roehl and others (2006a) was developed to predict the residual 
errors (εGH ) of the linear fit submodels (fig. 16). Here, a single 
SIANN is used to model the εGH signals for all the water-level 
sites. This approach uses a “stacked” dataset that includes 
time series and static variables (spatial coordinates) for the six 
water-level stations. The representation of the dynamic input 
signals is as follows. Moving window averages of 3, 10, 30, 
90, 210, and 330 days were calculated for rainfall (RAIN), 
evapotranspiration (ET), and total inflow and outflow (TOTQ) 
and were named sequentially for the increasing moving 
window size. For example, RAIN_A0 represented the 3-day 
moving window average for rainfall, RAIN_A1 represented 
the 10-day average, RAIN_A2 represented the 30-day average, 
and so on. The moving window sizes were selected to capture 
daily, weekly, monthly, seasonal, intra-annual, and annual 
variability of the parameter. For each parameter, differences 
between each moving window average and the next larger 
window-sized moving window average were calculated, 
for example, RAIN_D0 =RAIN_A0 – RAIN_A1 and 
RAIN_D1 =RAIN_A1 – RAIN_A2 and so on. No differences 
were calculated for the 330-day moving window averages 
(fig. 17). This approach is analogous to band-pass spectral 
filtering in that it decomposes a raw signal into different 
spectral components. It is left to the SIANN to learn which 

parameters and spectral ranges are the best predictors of 
behaviors that are manifest in εGH and which were not captured 
by the linear fit water-level models. 

ANN models are developed iteratively by starting with 
a candidate pool of input parameters, training the ANN with 
them, and then using prediction accuracy statistics, such as R2 
and input-output sensitivities, to cull the least important inputs. 
Because of the spatial variability in water level among the sites, 
only ET_D3 was culled. The flow of data and linear model 
predictions into and out of the SIANN are shown in figure 13. 
The 20 inputs used in the final SIANN are listed below.

•	 GH-LFITS = the prediction made by the linear  
submodels at each site

•	 X, Y = coordinates of the water-level sites  
that have been normalized by subtracting  
the lowest UTM (Universal Transverse Mercator)
coordinates of the Refuge’s boundary

•	 RAIN_D0, RAIN_D1, RAIN_D2, RAIN_D3, 
RAIN_D4, RAIN_A5

•	 ET_D1, ET_D2, ET_D3, ET_D4, ET_A5

•	 TOTQ_D0, TOTQ_D1, TOTQ_D2, TOTQ_D3, 
TOTQ_D4, TOTQ_A5

Variable names and descriptions for all the input variables 
used in the LOXANN DSS are listed in appendix 1.
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Figure 17.  Average daily rainfall and five frequency components for the rainfall time series, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida, January 2002 to December 2003.
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Figure 17.  Average daily rainfall and five frequency components for the rainfall time series, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida, January 2002 to December 2003.



Simulating Water Levels, Specific Conductance, and Total Phosphorus     23

The SIANN was trained using approximately 50 percent 
of the available data, which were randomly selected, with 
the balance being set aside to test the submodel’s prediction 
accuracy. Figure 18 shows the gage height error prediction 
(εGH) of the SIANN model. The stacked dataset used to train 
the SIANN model concatenates the data. The predictions for 
each gaging station are shown beside one another. Note in 
table 8 that the R2 and RMSE of the training and test data are 
similar. The final water-level prediction is the combination of 
the linear water-level models prediction and the SIANN model 
error prediction for the site. The measured and simulated 

water levels for the Refuge are shown in figure 19, and the 
water-level model performance statistics are listed in table 9.

After the development of the gage height models, it came 
to the authors’ attention that there is an approximately 0.16 ft 
discrepancy between the water level at site 1-8C and the vertical 
datum (Michael Waldon, U.S. Fish and Wildlife Service, oral 
commun., January 7, 2010; fig. 20). This discrepancy does not 
affect the prediction of water level at site 1-8C but would affect 
analysis of water-level slopes between site 1-8C and the other 
five gaging stations. To account for this discrepancy, a –0.16 ft 
adjustment was made to the site 1-8C gage-height predictions.

Figure 18.  Measured and predicted water level model error for six continuous streamgaging stations, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. See figure 6 for locations. 
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Figure 18.  Measured and predicted water-level model error for six continuous streamgaging stations, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. See figure 6 for locations. 
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Figure 19. Measured and predicted water level for six continuous streamgaging stations, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida. See figure 6 for locations. 

Figure 19.  Measured and predicted water level for six continuous streamgaging stations, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida. See figure 6 for locations.
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Figure 20.  Water levels at sites 1-8T and 1-8C, and a 0.16-foot adjustment to water level at site 1-8C, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, March 2001 to December 2006. 
See figure 6 for site locations.
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Figure 20.  Water levels at sites 1-8T and 1-8C, and a 0.16-foot adjustment to water level at site 1-8C, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, March 2001 to December 2006. See 
figure 6 for site locations.

Table 9.  Statistics for final water-level simulations.

[R2, coefficient of determination; RMSE, root mean square error]

Streamgaging 
station

Count R2
RMSE Minimum Maximum Range Model error,

percentInches

Site 1-7 2,123 0.932 1.36 178.6 210.8 32.2 4.2

Site 1-8T 1,705 0.976 1.35 167.3 209.6 42.3 3.2

Site 1-8C 2,123 0.932 1.36 144.7 211.6 66.9 2.0

Site 1-9 2,312 0.953 1.34 177.4 209.2 31.8 4.2

North 1,985 0.902 1.47 188 216.0 28.0 5.3

South 1,436 0.972 1.38 170.8 207.2 36.4 3.8

Table 8.  Water-level error correction model performance statistics.

[R2, coefficient of determination; RMSE, root mean square error]

Dataset Count R2 RMSE  
inches

Training 5,847 0.72 1.46

Testing 5,873 0.73 1.52
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Specific Conductance and  
Total Phosphorus Models

A two-step modeling approach was used to simulate 
specific conductance and total phosphorus at the XYZ and LOX 
sampling sites. The specific conductance and total phosphorus 
process models use water-level inputs, either historical or from 
the water-level models, and specific conductance and total phos-
phorus inputs from control structures (fig. 13). The approach 
uses output from the first SIANN model as input to the second 
SIANN model. The first submodel (SCstatic SIANN and TPstatic 
SIANN, fig. 13) for each of the models uses only static variable 
input of location (X and Y coordinates) of the sampling site to 
predict either specific conductance or total phosphorus. The 
static models predict a baseline specific conductance or total 
phosphorus that varies by location but not time. Although the 
static models are not able to predict the dynamic variability of 
the specific conductance or total phosphorus, the models are 
able to discriminate general site-to-site differences on the basis 
of sampling site location. The baseline is similar to a historical 
average, but the SIANN automatically spatially interpolates to 
predict baseline values at unmonitored locations without using 
a post-processing scheme, such as kriging. The measured 
data with the specific conductance (25 sampling sites of the 
XYZ and LOX network) and total phosphorus (14 sampling 
sites of the LOX network) baseline predictions are shown 
in figures 21 and 22, respectively, and model performance 
statistics are listed in table 10. As with the gage height error 
correction SIANN model, the specific conductance and total 
phosphorus models used stacked datasets, and the model 
results are shown with the sampling sites beside one another.

To predict the dynamic components of the specific con-
ductance and total phosphorus signals, the baseline predictions 
were subtracted from the measured data to compute residual 
errors from the static SIANN models, εSC and εTP (εSC SIANN 

and εTP SIANN, fig. 13). The residual error time series from 
the static SIANN models (εSC and εTP , respectively) are the 
dynamic components of the specific conductance and total 
phosphorus signals. The εSC and εTP time series were then 
modeled with SIANNs, such that the sum of the predicted 
baselines and errors yield predictions of specific conductance 
and total phosphorus. 

Many configurations of inputs for the SIANN models 
were considered. Itemized below are comments and observa-
tions made from evaluating many ANN configurations. The 
evaluations were made difficult by the sparseness (table 2) 
and lack of coincidence in measurement of the specific 
conductance and total phosphorus data from the control 
structures and the XYZ and LOX sites. 

•	 The specific conductance and total phosphorus data 
from the control structures were linearly interpolated 
up to 90 days. The variable name includes “I90” to 
indicate the 90-day interpolation. The interpolation 
was necessary in order to use control structure 
data for input water-quality boundary conditions 
(S39 SCcomponents and S6 TPcomponents , fig. 13); however, 
using a window size that is relatively large compared 
to sampling frequency to interpolate presumably 
spiky signals decreases their signal-to-noise ratio and 
reliability as predictors.

•	 Missing site 1-8C water-level values were synthesized 
by an ANN using water-level inputs calculated from 
sites having fewer missing values. These filled values 
in the time series increased the number of site 1-8C 
values from 3,838 to 3,926. While the increase is 
small, when missing values are scattered throughout 
the signal, the number of calculable window averages 
decreases with increasing window size. (The filled 
parameter is called F_GH_1-8C, appendix 1.)

Table 10.  Model performance statistics for the static and dynamic specific conductance and total phosphorus models.

[R2, coefficient of determination; RMSE, root mean square error; —, not applicable]

Model
Training dataset

count
Testing dataset 

count
R2 

(training/testing)
RMSEa

(training/testing)

Models—Static

Specific conductance 2,185 0 0.72/0 174/0

Total phosphorus 637 706 0.0185/0.0471 0.0061/0.0047

Models—Dynamic

Specific conductance 1,470 682 0.522/0.428 119/136

Total phosphorus 1,032 255 0.464/0.601 0.00318/0.00305

Final predictionb (sum of static and dynamic model predictions)

Specific conductance — — 0.822 —

Total phosphorus — — 0.509 —
a Units for RMSE are microsiemens per centimeter for specific conductance and milligrams per liter for total phosphorus.
b Statistic computed using all measured and predicted data.
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Figure 21.  Measured and predicted specific conductance from the static SIANN model for XYZ and EVPA networks,
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, 
were used to develop the models. See figure 7 for locations. 
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Figure 22.  Measured and predicted total phosphorus concentration from the static SIANN models for the 
EVPA network, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, 
to December 14, 2004, were used to develop the models. See figure 7 for locations.  
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Figure 21.  Measured and predicted specific conductance from the static SIANN model for XYZ and EVPA 
networks, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, to 
December 14, 2004, were used to develop the models. See figure 7 for locations.

Figure 22.  Measured and predicted total phosphorus concentration from the static SIANN models for the 
EVPA network, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, 
to December 14, 2004, were used to develop the models. See figure 7 for locations.
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Modeling Specific Conductance  
Residual Error (εSC) 

The approach for modeling the dynamic specific con-
ductance signal is similar to the approach used for modeling 
the error of the linear regression water-level models. The 
rainfall (RAIN) and evapotranspiration (ET) time series were 
summed at each time step, and the combined variable was 
named RAIN-ET-COMB. The water levels were normalized 
by using site 1-8T as a standard, and the daily water levels for 
the other sites (site 1-7, site 1-8C, site 1-9, north, and south) 
were subtracted from the water level for site 1-8T. Normalized 
water-level variable names are designated with the prefix “N_.” 
Moving window averages of 3, 9, 30, 90, and 180 days were 
calculated for RAIN-ET-COMB, water level at site 1-8T, the 
normalized water-level parameters, and the 90-day interpolated 
S-39 control structure specific conductance. For example, 
RAIN-ET-COMB_A3 is the 3-day moving window average 
of the combined rainfall and evapotranspiration parameter, 
RAIN-ET-COMB. Differences between each moving window 
average and the next larger window-sized moving window 
average were calculated for each parameter. For example, 
RAIN-ET-COMB_D3 is the difference between the 3-day 
(RAIN-ET-COMB_A3) and 9-day (RAIN-ET-COMB_A9) 
moving window average for the combined rainfall and 
evapotranspiration parameter. No differences were calculated 
for the 180-day moving window averages. The following 
inputs were used in the εSC SIANN model:

•	 X, Y coordinates of the XYZ and LOX specific 
conductance monitoring sites

•	 RAIN-ET-COMB_D30, RAIN-ET-COMB_D90, 
RAIN-ET-COMB_A180

•	 N_GH_1-7_D10

•	 GH _1-8T_D3, water level_1-8T_D10, 
GH _1-8T_D30, GH _1-8T_A90

•	 N_F_ GH _1-8C_D3, N_F_ GH _1-8C_D9, 
N_F_ GH _1-8C_D30

•	 S39-specific conductance_I90_A30

The SIANN was trained using approximately 70 percent 
of the available data, which were randomly selected, with 
the balance being set aside to test the prediction accuracy 
of the submodel. The SIANN’s predictions of εSC are shown 
in figure 23, and model performance statistics are listed in 
table 10. The final predictions of specific conductance were 
calculated by summing the output values from the static and 
SIANN models (fig. 24). 

Modeling Total Phosphorus Residual Error (εTP) 
Input variables were computed for the εTP SIANN model 

as were done for the εSC SIANN models with the following 
changes based on higher correlation of input variables to total 
phosphorus. The water level at site 1-8C instead of site 1-8T 
was used as the standard to normalize the water levels. The 
90-day interpolated control structure input data were from the 
S6 control structure instead of the S-39 control structure. The 
following inputs were used in the εSC SIANN model:

•	 X, Y = UTM coordinates of the XYZ and LOX  
specific conductance monitoring sites

•	 RAIN-ET-COMB_D3, RAIN-ET-COMB_D9,  
RAIN-ET-COMB_D30, RAIN-ET-COMB_A90

•	 N_ GH _1-7_D3, N_ GH _1-7_D9,  
N_ GH _1-7_D30, N_ GH _1-7_A90

•	 N_ GH _1-9_D9, N_ GH _1-9_D30,  
N_ GH _1-9_A90

•	 S6-TP_I90_D90, S6-TP_I90_A180
The εTP SIANN was trained using approximately 

80 percent of the available data, which were randomly 
selected, with the balance being set aside to test the prediction 
accuracy of the submodel. The SIANN’s predictions of εTP 
are shown in figure 25. The final predictions of specific 
conductance were calculated by summing the output values 
from the static and εTP-prediction SIANN models (fig. 26), 
and model performance statistics are listed in table 10. 
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Figure 23.  Measured and predicted specific conductance model error for XYZ and EVPA networks, Arthur 
R. Marshall Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, 
were used to develop the models. See figure 7 for locations. 

Figure 24.  Measured and predicted specific conductance for XYZ and EVPA networks, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, were used 
to develop the models. See figure 7 for locations. 

Figure 24.  Measured and predicted specific conductance for XYZ and EVPA networks, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, were used to develop the models.
See figure 7 for locations.   
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Figure 23.  Measured and predicted specific conductance model error for XYZ and EVPA networks, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, 
were used to develop the models. See figure 7 for locations.   
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Figure 25.  Measured and predicted total phosphorus model error for the EVPA network, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, were used to develop the models. 
See figure 7 for locations.   
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Figure 26.  Measured and predicted total phosphorus for the EVPA network, Arthur R. Marshall Loxahatchee National 
Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, were used to develop the models. See 
figure 7 for locations.    
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Figure 25.  Measured and predicted total phosphorus model error for the EVPA network, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, were used to 
develop the models. See figure 7 for locations. 

Figure 26.  Measured and predicted total phosphorus for the EVPA network, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida. Data from January 11, 1995, to December 14, 2004, were used to develop the 
models. See figure 7 for locations. 
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Analysis of Specific Conductance and Total 
Phosphorus Trends Using the Spatially 
Interpolating Artificial Neural Network Models

The long-term specific conductance and total phosphorus 
trends can be evaluated using SIANN models that use only 
inputs of sampling site location (X and Y) and time, the latter 
represented by an integer counter. This result would be similar 
to fitting a time-series record with a least-square linear fit and 
evaluating the trend of the data by the slope of the regression 
line. Training and testing datasets were selected by a zone-
averaging filter that segments the input vector space into 
partitions of equal size and then selects a user-defined number 
of vectors from each partition to be used for model training. 
This ensures that the training data represent the breadth of 
behaviors manifest in the full dataset, while at the same time 
balances the prevalence of more and less common behaviors 
in the training data. The testing data includes the full dataset. 
The specific conductance SIANN model predictions at the 
XYZ and LOX sites are shown in figure 27, and the model 
performance statistics are listed in table 11. Like the other 
datasets used in the development of the SIANN models, data 
from the sites are shown with the sampling sites beside one 
another. The period modeled was from January 11, 1995, to 
December 14, 2004. The long-term trends at the majority of 
sites show increasing specific conductance. 

 The total phosphorus SIANN model for trend analysis 
used the same inputs of location and time as the specific 
conductance SIANN model. The training and testing datasets 
were selected randomly with approximately 80 percent of the 
data used for training. The total phosphorus SIANN model 
predictions at the XYZ and LOX sites are shown in figure 28, 

and the model performance statistics are listed in table 11. 
Data from the sites are shown with the sampling sites beside 
one another. The period modeled was from January 11, 1995, 
to December 14, 2004. Unlike the linear increase seen at the 
majority of the specific conductance sites, the total phosphorus 
predictions show an oscillatory response with a peak concen-
tration approximately halfway through the simulation period 
and an increasing trend at the end of the simulation period. 

Color gradient maps of specific conductance and total 
phosphorus were created using the SIANN model predictions 
for dates corresponding to the beginning, midpoint, and end of 
the modeled period, or January 11, 1995, December 28, 1999, 
and December 14, 2004, respectively. In figure 29, red 
triangles and magenta squares mark the XYZ and LOX 
sampling sites, respectively. The magenta boundaries mark 
the convex hull (or region of model interpolation) of the X 
and Y coordinates of the sites included in each SIANN model. 
Simulations outside the convex hulls are model extrapolations. 
The specific conductance maps for the successive dates show 
an increasing trend throughout the Refuge that also is seen 
in the specific conductance simulations at the majority of the 
sampling sites (fig. 27). The figure indicates that there may 
be mixing of the higher conductance canal water with lower 
conductance marsh water. The maps of total phosphorus 
show variability in both concentrations and prevailing 
gradient directions. The total phosphorus simulations (fig. 28) 
also show the temporal variability and a similarity in the 
nonlinear trends between the sampling sites. The variability 
may be caused by changes in annual loading to the system, 
effectiveness of the stormwater-treatment areas, interannual 
hydrologic variability of the magnitude of wet and dry 
seasons, or storm activity, such as hurricanes.

Table 11.  Model performance statistics for the specific conductance and total phosphorus models used for trend analysis.

[R2, coefficient of determination; RMSE, root mean square error]

Model 
Training dataset 

count
Testing dataset 

count
R2 

(training/testing)
RMSEa

(training/testing)

Specific conductance 210 2,212 0.80/0.69 109/187

Total phosphorus 1,054 273 0.078/0.055 0.0035/0.0033
a Units for RMSE are microsiemens per centimeter for specific conductance and milligrams per liter for total phosphorus.
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Figure 27.  Measured and predicted specific conductance to evaluate trends at XYZ and EVPA networks, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida. Simulations were made by a SIANN using only X, Y, and time as inputs. 
Data from January 11, 1995, to December 14, 2004, were used to develop the models. See figure 7 for locations.    
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Figure 28.  Measured and predicted total phosphorus to evaluate trends at EVPA networks, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida. Simulations were made by a SIANN using 
only X, Y, and time as inputs. Data from January 11, 1995, to December 14, 2004, were used to 
develop the models. See figure 7 for locations.    
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Figure 27.  Measured and predicted specific conductance to evaluate trends at XYZ and EVPA networks, Arthur R. 
Marshall Loxahatchee National Wildlife Refuge, Florida. Simulations were made by a SIANN using only X, Y, and time as 
inputs. Data from January 11, 1995, to December 14, 2004, were used to develop the models. See figure 7 for locations. 

Figure 28.  Measured and predicted total phosphorus to evaluate trends at EVPA networks, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Simulations were made by a 
SIANN using only X, Y, and time as inputs. Data from January 11, 1995, to December 14, 2004,  
were used to develop the models. See figure 7 for locations. 
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Figure 29.  Color gradient 
maps of specific conductance 
and total phosphorus as 
predicted by SIANNs for the 
Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, 
Florida. (A) January 11, 1995; 
(B) December 28, 1999; 
(C) December 14, 2004.
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Development of the  
Decision Support System

Resource managers and stakeholders face difficult 
challenges when managing interactions between natural 
and manmade systems. Complex mechanistic models based 
on first principles physical equations are often developed 
and operated by scientists at considerable costs to evaluate 
options for using a resource while minimizing harm. However, 
varying technical abilities and financial constraints among 
different stakeholders effectively restrict access to relevant 
scientific knowledge and tools. Decision support system 
technology can help meet the need to provide equal access 
to the knowledge and tools required for informed decision 
making. Even though the collective interests and computer 
skills within the community of managers, scientists, and other 
stakeholders are quite varied, equal access to the scientific 
information is needed in order to make the best possible 
decisions. Dutta and others (1997) define DSSs as “systems 
helping decision-makers to solve various semi-structured and 
unstructured problems involving multiple attributes, objec-
tives, and goals… Historically, the majority of DSSs have 
been either computer implementations of mathematical models 
or extensions of database systems and traditional management 
information systems.” While there appears to be no strict 
criteria that distinguish a DSS from other types of programs, 
Dutta and others (1997) suggest that artificial intelligence (AI) 
is a characteristic of more advanced DSSs: “With the help of 
AI techniques DSSs have incorporated the heuristic models 
of decision makers and provided increasingly richer support 

for decision making. Artificial intelligence systems also have 
benefited from DSS research as they have scaled down their 
goal from replacing to supporting decision makers.” 

The authors of this report have previously developed 
three DSSs in South Carolina and Georgia to evaluate  
(1) wastewater discharges and dissolved-oxygen concentration 
in the Beaufort River estuary (Conrads and others, 2003; 
Roehl and others, 2006b); (2) salinity effects on freshwater 
tidal wetland and a proposed deepening of the Savannah 
Harbor (Conrads and others, 2006); and (3) the effect of 
controlled flow releases from reservoirs on the Pee Dee River 
in North Carolina and on salinity dynamics along the South 
Carolina coast (Conrads and Roehl, 2007). These DSSs are 
spreadsheet applications that provide predictive models with 
real-time databases for ANN model simulation, graphical user 
interfaces, and displays of results. Additional features include 
optimizers, integrations with other models and software tools, 
and color contouring of simulation output data. These features 
make the DSSs easily distributable and immediately usable by 
all resource managers and stakeholders. 

The development of a DSS for the Refuge required 
a number of steps (described previously), including 
(1) merging all the data into a single comprehensive database; 
(2) developing water-level, specific conductance, and total 
phosphorus linear regression and SIANN submodels; and 
(3) developing a Microsoft Office Excel® application that 
integrates the new database, submodels, and visualization 
routines into a single package that is easy to use and dissemi-
nate. The user’s manual for the installation and operation of 
the LOXANN DSS is available in appendix 2.
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Architecture

The basic architectural elements of the LOXANN DSS 
are shown in figure 30. The DSS reads and writes files for 
the various run-time options that can be selected by the user 
through the system’s graphical user interface. A historical 
database, containing 12 years of hydrologic data, is read into 
the simulator along with the linear regression and SIANN 
submodels at the start of a simulation. By using graphical 
user interface controls, the user can evaluate alternative flow 
scenarios. The outputs generated by the simulator are written  
to files for post processing in Microsoft Office Excel® or other
analysis software packages. The DSS also provides streaming 
graphics for each gage during simulations and three-dimensional 
visualization of the water-level, specific conductance, and total 
phosphorus response for the Refuge models. 

Model Simulation Control, Streaming Graphics, 
and Three-Dimensional Visualization Program 

The simulator in the LOXANN DSS integrates the 
historical database with the six linear regression models 
and five SIANN models. The date/time controls on the user 
control panel (fig. 31) are used to adjust start and end dates 
and parameters (water level, specific conductance, and (or) 
total phosphorus) for a simulation. The simulator allows the 
user to run “what-if” simulations by varying the control-
structure flows from their historical values. There are two 
types of inputs to a model: (1) controllable variables, such 
as the control-structure flows, and (2) uncontrollable state 
variables, such as rainfall and evapotranspiration. To evaluate 
alternative courses of action, the controllable inputs can be 
manually manipulated by the user while the uncontrollable 
and constantly changing variables representing rainfall and 

evapotranspiration are set to their historical values. The user 
has three simulation input variable options: 

•	 percentage of historical control-structure flow  
to the system, 

•	 user-defined control-structure flow to a  
constant value, or 

•	 user-defined flow hydrograph for one or more  
control structures.

Explanations of how to use each of the options in the LOX-
ANN DSS can be found in the user’s manual in appendix 2.

For each water-level gage or sampling site, a worksheet 
displays streaming graphics while a simulation is running for 
any three simulated variables selected by the user (fig. 32). The 
graphs display the historical measured data, simulated historical 
conditions (to show model accuracy), and the simulated output 
using control-structure flow set by the user using the graphical 
user interface controls or an input file. A table in the worksheet 
shows the input data to the model, including rainfall, evapo-
transpiration, and aggregated control-structure flows.

The three-dimensional visualization (3DVis) worksheet 
in the LOXANN DSS provides graphical profiles of water 
level, specific conductance, and total phosphorus for the 
region of the Refuge simulated by the models (fig. 33). The 
3DVis worksheet is designed to visualize and animate periods 
of special interest. Data and the controls for operating the 
3DVis worksheet are on the left side of the 3DVis worksheet. 
The data are a subset of those in the “Control” worksheet 
(appendix 2) and are provided for reference while using 
the 3DVis worksheet. Surfaces of gage height, specific 
conductance, and total phosphorus are shown in figure 33. 
The surface on the left shows the profile representing the 
actual historical data (when available), and the surface on 
the right shows the surface predicted by the models using the 
user-specified flow conditions. 
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Figure 30.  Architecture of the LOXahatchee Spatially Interpolating Artificial Neural 
Network Model (LOXANN) LOXANN decision support system.

Figure 30.  Architecture of 
the LOXahatchee Artificial 
Neural Network (LOXANN) 
decision support system.
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Figure 31.  Model simulator controls used to set parameters and run a simulation in the LOXANN decision support system.

Figure 32.  Streaming graphics displayed during simulation in the LOXANN decision support system.

Figure 31.  Model simulator controls used to set parameters and run a simulation in the LOXANN decision support system. 
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Figure 33.  Three-dimensional surfaces of (A) water levels, (B) specific conductance, and (C) total phosphorus, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Maps on the left show the region of the particular 
model interpolation. Surfaces on the left represents actual conditions and surfaces on the right represents a user- 
defined scenario. Values in the cells are calculated by linear interpolation (water levels) or spatially interpolating 
artificial neural network models.  
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Figure 33.  Three-dimensional surfaces of (A) water levels, (B) specific conductance, and (C) total phosphorus, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida. Maps on the left show the region of the particular 
model interpolation. Surfaces on the left represent actual conditions and surfaces on the right represent a user- 
defined scenario. Values in the cells are calculated by linear interpolation (water levels) or spatially interpolating 
artificial neural network models. 
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Application of the LOXANN  
Decision Support System 

The development of the linear regression and SIANN 
models and the DSS application for the Refuge provides 
resource managers with a tool to evaluate water level, specific 
conductance, and total phosphorus dynamics in the areas of the 
Refuge. The LOXANN DSS allows users to simulate various 
control structure flow conditions and analyze the water-level, 
specific conductance, and total phosphorus response as an aid 
to understanding water-quantity and water- quality dynamics 
in the Refuge. The increase in specific conductance and total 
phosphorus in the marsh is a result of canal water intruding into 
the marsh. This increase occurs when water levels are higher in 
the canal than the water level in the marsh and higher nutrient 
concentration of canal water mixes with marsh water near the 
canals. The greater the water-level gradient between the canal 
and the marsh, the further the high nutrient concentration water 
will enter into the marsh. Large increases in the water-level 
gradient could have the negative effect of increasing flows 
leaving the marsh and drying out the wetland.

In the LOXANN DSS, the user is able to set control-
structure flows as a constant flow, a percentage of historical 
flow, or as a user-defined hydrograph. These settings also can 
be set in combinations. For example, some structures can be 
set to a constant flow, while others are set to a percentage 
of historical flow, and others to a user-defined flow. The 
following section describes applications of the LOXANN-DSS 
to two hydrologic scenarios. The results from these scenarios 

are intended to demonstrate the utility of the LOXANN DSS 
and are not intended to be interpreted as potential hydraulic 
operations or a regulatory application of the DSS.

Percentage of Historical Flow
One user-specified option is to set the control-structure 

flows at a percentage of the historical flow. To evaluate 
the change to the slope between the canal (site 1-8C) and 
the marsh (site 1-7), the flow for the aggregated Q4 flows 
(structures S-39, S-10A, S-10C, and S-10D) was set to 
140 percent of the historical flows for the 6-year period of 
May 1, 2000, to April 30, 2006. The Q4 flows are negative, 
or out of the Refuge, so an increase in the flows indicates an 
increase in the flows leaving the Refuge. The slope between 
sites 1-8C and 1-7 was computed for the simulated actual 
flow conditions and the user-specified setting of 40-percent 
increase in the Q4 flows (fig. 34). The increased flow out 
of the canal decreased the water-level elevation in the canal 
and reduced the occurrence of negative slopes and potential 
intrusion conditions for flows into the interior of the marsh as 
seen for extended periods of time such as September 2001 to 
April 2002 and September 2003 to April 2004. 

Another method for evaluating the model results is to plot 
the results as a cumulative frequency distribution rather than a 
time series (fig. 35). The simulated actual conditions show that 
the negative slopes (of all magnitudes) occur about 40 percent 
of the time. Increasing the flows out of the four Q4 control 
structures by 40 percent decreased the percentage of time that 
negative slopes occurred to less than 10 percent of the time. 

Figure 34.  Simulated actual conditions and a 40-percent increase to the historical flows for 
aggregated flows of Q4, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida,  
May 2000 through April 2006. Gaps in simulations are due to one or more missing inputs to the 
models. See figure 8 for location.

Figure 34.  Simulated actual conditions and a 40-percent increase to the historical flows for aggregated 
flows of Q4, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, May 2000 through April 2006. 
Gaps in simulations due to one or more missing inputs to the models. See figure 8 for locations. 
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User-Defined Hydrograph

Another user-specified option is to create a user-defined 
hydrograph to use for input for one or more of the control 
structures. With this option, daily hydrographs for the control 
structure(s) of interest are created outside of the LOXANN 
DSS. The simulation period is selected and the DSS uses the 
user-defined hydrographs as inputs for the simulation period. 
One scenario was simulated using this option. The sum of 
the inflows and outflows was computed for the 4-year period 
2001–2004, and flows into the Refuge were 50-percent greater 
than flows out of the Refuge (2,080,000 and 812,000 cubic 
feet per second, respectively; fig. 36). A user-defined hydro-
graph was computed for the flow structure for Q4 where the 
outflow from the Refuge equals the weekly average of the 
inflows to the Refuge delayed by 2 days. Although the user-
defined outflow hydrograph does not appear to be substantially 
different from the measured outflow hydrograph, the total 
outflow is increased by more than 50 percent to equal the 
inflow hydrograph. There are periods, such as November 2001 
through February 2002, August 2002 through November 2002, 
and September 2003 through November 2003, where the 
outflows are noticeably increased from the actual outflows. 

Time series and cumulative frequency plots show that 
increasing the outflow from the Refuge had the effect of 
reducing the magnitude of the negative slopes and potential 
for intrusion of canal water into the marsh (figs. 37, 38). 
Increasing the outflow also had the effect of increasing the 
positive slopes above 15 inches by up to 20 inches (fig. 37) 
and decreasing the negative slopes between 0 and 8 inches to 
3 inches or less.

Figure 35.  Cumulative frequency of slopes from the canal 
to marsh for simulated actual conditions and a 40-percent 
increase to the historical flows for the aggregated Q4 
control-structure flow, Arthur R. Marshall Loxahatchee 
National Wildlife Refuge, Florida. Data generated from a 
simulation from May 2000 through April 2006. See figure 8
for locations.

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
0

Cu
m

ul
at

iv
e 

fre
qu

en
cy

, i
n 

pe
rc

en
t

10

20

30

40

50

60

70

80

90

100

Simulated
actual

conditions 

Simulated user-
defined flow inputs 

Slope, in feet

Figure 35.  Cumulative frequency of slopes from the 
canal to marsh for simulated actual conditions and 
a 40-percent increase to the historical flows for the 
aggregated Q4 control-structure flow, Arthur R. Marshall 
Loxahatchee National Wildlife Refuge, Florida. Data 
generated from a simulation from May 2000 through  
April 2006. See figure 8 for location.

Figure 36.  Historical inflow and outflow hydrographs and a user-defined hydrograph for 
the aggregated Q4 flow, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, 
January 2001 through December 2004. See figure 8 for location.
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Figure 36.  Historical inflow and outflow hydrographs and a user-defined hydrograph for 
the aggregated Q4 flow, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, 
January 2001 through December 2004. See figure 8 for locations.
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Figure 38.  Cumulative frequency of slopes from the canal to
marsh for simulated actual conditions and a user-defined
hydrograph for the aggregated Q4 control-structure flows,
Arthur R. Marshall Loxahatchee National Wildlife Refuge, 
Florida. Data generated from a simulation from January 2001 
through December 2006. See figure 8 for locations.

Figure 38.  Cumulative frequency of slopes from the canal 
to marsh for simulated actual conditions and a user-defined 
hydrograph for the aggregated Q4 control-structure flows, 
Arthur R. Marshall Loxahatchee National Wildlife Refuge, 
Florida. Data generated from a simulation from January 2001 
�through December 2006. See figure 8 for location.

Figure 37.  Simulated actual conditions and conditions from a user-defined hydrograph for aggregated 
flows of Q4, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, January 2001 to April 2006. 
Gaps in simulations due to one or more missing inputs to the models. See figure 8 for location.
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Figure 37.  Simulated actual conditions and conditions from a user-defined hydrograph for aggregated 
flows of Q4, Arthur R. Marshall Loxahatchee National Wildlife Refuge, Florida, January 2001 to April 2006. 
Gaps in simulations due to one or more missing inputs to the models. See figure 8 for locations.
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Summary
The Arthur R. Marshall Loxahatchee National Wildlife 

Refuge (Refuge) is the last of the soft-water ecological 
systems with low calcium or magnesium ion concentrations 
in the Everglades. Historically, the ecosystem was driven by 
precipitation inputs to the system that were low in specific 
conductance and nutrients. Water levels and water quality 
in the flow-controlled canals surrounding the Refuge have 
the potential to alter the critical ecosystem functions of the 
Refuge marsh because of the transport of water with higher 
specific conductance and nutrient concentrations. 

The U.S. Geological Survey and the U.S. Fish and 
Wildlife Service realized an opportunity existed to develop 
an empirical model using data-mining techniques, including 
artificial neural networks (ANNs), to simulate water level, 
specific conductance, and total phosphorus in the interior 
marsh of the Refuge by using the large databases of hydro-
logic and water-quality data. Hydrologic and water-quality 
data have been collected in the Refuge for many years. 
Data characterizing the hydrology of the system—inflows, 
outflows, precipitation, and water levels—have been 
collected since the 1950s. Data characterizing the water 
quality of the system, including specific conductance and 
total phosphorus, have been collected since the late 1970s. 
New technologies in environmental monitoring have made it 
cost effective to acquire tremendous amounts of hydrologic 
and water-quality data. 

Empirical linear regression and ANN models to simulate 
water level, specific conductance, and total phosphorus were 
developed using data-mining techniques. Data mining is a 
powerful tool for converting large databases into information 
to solve complex problems resulting from large numbers of 
explanatory variables or poorly understood process physics. 
For the application of the linear regression and ANN models 
to the Refuge, data-mining methods were applied to maximize 
the information content in the raw data. Inputs to the empirical 
models include time series, or signals, of inflows and outflows 
from the control structures, precipitation, and evapotranspira-
tion. For a complex hydrologic system like the Refuge, the 
statistical accuracy of the models and predictive capability 
are good. The water-level models have coefficient of 
determination (R2) values ranging from 0.90 to 0.98. Specific 
conductance at 25 sites and total phosphorus at 14 sites were 
modeled using spatially interpolating ANN models. The R2 
for the specific conductance model is 0.82, and the R2 for the 

total phosphorus model is 0.51. The accuracy of the models 
is attributable to the quantity and quality of the available 
data. The water-level models were developed using daily 
water-level, flow, rainfall, and evapotranspiration data. The 
available specific conductance and total phosphorus data were 
temporally sparse for developing daily models.

The water-level, specific conductance, and total phos-
phorus models, historical database, model simulation controls, 
streaming graphics, and model output were integrated into 
a decision support system (DSS) named the Loxahatchee 
Artificial Neural Network Model (LOXANN) DSS. The 
LOXANN DSS allows the user to manipulate the flow inputs 
to the system. Three options are available to the user in setting 
the control-structure flows: percentage of historical flow, 
constant flow, and a user-defined hydrograph. Output from 
the LOXANN DSS includes tabular time series of predictions 
of the measured data and predictions of the user-specified 
conditions. A three-dimensional visualization routine also 
was developed that displays longitudinal specific conductance 
conditions. The visualization routine uses predictions at the 
gaging station or sampling locations and interpolates values 
among stations. The LOXANN DSS is a spreadsheet applica-
tion that facilitates the dissemination and utility of the DSS.

Two scenarios were simulated with the LOXANN 
DSS. One scenario increased the historical flows at the S-39, 
S-10A, S-10C, and S-10D control structures by 40 percent. 
The second scenario used a user-defined hydrograph to set 
the outflow from the Refuge to the weekly average inflow to 
the Refuge delayed by 2 days. Both scenarios decreased the 
potential of canal water intruding into the marsh by decreasing 
the slope of the water level between the canal (site 1-8C) and 
the marsh (site 1-7). 
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Appendix 1.  List of variables used in the study.—Continued

Variable Description

ET_A0 3-day moving window average of evapotranspiration (ET)

ET_A1 10-day moving window average of evapotranspiration (ET)

ET_A2 30-day moving window average of evapotranspiration (ET)

ET_A3 90-day moving window average of evapotranspiration (ET)

ET_A4 210-day moving window average of evapotranspiration (ET)

ET_A5 330-day moving window average of evapotranspiration (ET)

ET_D0 Difference between the 3-day and 10-day moving window average of evapotranspiration (ET)

ET_D1 Difference between the 10-day and 30-day moving window average of evapotranspiration (ET)

ET_D2 Difference between the 30-day and 90-day moving window average of evapotranspiration (ET)

ET_D3 Difference between the 90-day and 210-day moving window average of evapotranspiration (ET)

ET_D4 Difference between the 210-day and 330-day moving window average of evapotranspiration (ET)

F_GH_1-8C Filled gage heights for the site 1-8C gaging station

GH_1-8C_D3 Difference between the 3-day and 9-day moving window average of site 1-8C gage heights

GH_1-8C_D30 Difference between the 30-day and 90-day moving window average of site 1-8C gage heights

GH_1-8C_D9 Difference between the 9-day and 30-day moving window average of site 1-8C gage heights

GH_1-8C_D90 Difference between the 90-day and 180-day moving window average of site 1-8C gage heights

GH_1-8T_D3 Difference between the 3-day and 9-day moving window average of site 1-8T gage heights

GH_1-8T_D30 Difference between the 30-day and 90-day moving window average of site 1-8T gage heights

GH_1-8T_D9 Difference between the 9-day and 30-day moving window average of site 1-8T gage heights

GH_1-8T_D90 Difference between the 90-day and 180-day moving window average of site 1-8T gage heights

GH-1-8C_A10 10-day moving window of site 1-8C gage height (GH)

GH-1-8C_A180 180-day moving window of site 1-8C gage height (GH)

GH-1-8C_A30 30-day moving window of site 1-8C gage height (GH)

GH-1-8C_A30 3-day moving window of site 1-8C gage height (GH)

GH-1-8C_A90 90-day moving window of site 1-8C gage height (GH)

GH-1-8T_A10 10-day moving window of site 1-8T gage height (GH)

GH-1-8T_A180 180-day moving window of site 1-8T gage height (GH)

GH-1-8T_A30 30-day moving window of site 1-8T gage height (GH)

GH-1-8T_A30 3-day moving window of site 1-8T gage height (GH)

GH-1-8T_A90 90-day moving window of site 1-8T gage height (GH)

GH-ERR Difference between linear regression water-level model estimates and measured water levels 

GH-LFITS Gage height estimate from linear regression water-level models

N_GH_1-7_D3 Difference between the 3-day and 9-day moving window average of site 1-7 normalized gage heights

N_GH_1-7_D30 Difference between the 30-day and 90-day moving window average of site 1-7 normalized gage heights

N_GH_1-7_D9 Difference between the 9-day and 30-day moving window average of site 1-7 normalized gage heights

N_GH_1-7_D90 Difference between the 90-day and 180-day moving window average of site 1-7 normalized gage heights

N_GH_1-8C_D3 Difference between the 3-day and 9-day moving window average of site 1-8C normalized gage heights

N_GH_1-8C_D30 Difference between the 30-day and 90-day moving window average of site 1-8C normalized gage heights

N_GH_1-8C_D9 Difference between the 9-day and 30-day moving window average of site 1-8C normalized gage heights

N_GH_1-8C_D90 Difference between the 90-day and 180-day moving window average of site 1-8C normalized gage heights
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Appendix 1.  List of variables used in the study.—Continued

Variable Description

N_GH_1-9_D3 Difference between the 3-day and 9-day moving window average of site 1-9 normalized gage heights

N_GH_1-9_D30 Difference between the 30-day and 90-day moving window average of site 1-9 normalized gage heights

N_GH_1-9_D9 Difference between the 9-day and 30-day moving window average of site 1-9 normalized gage heights

N_GH_1-9_D90 Difference between the 90-day and 180-day moving window average of site 1-9 normalized gage heights

N_GH-1-7_A10 10-day moving window of site 1-7 normalized gage height (GH)

N_GH-1-7_A180 180-day moving window of site 1-7 normalized gage height (GH)

N_GH-1-7_A30 30-day moving window of site 1-7 normalized gage height (GH)

N_GH-1-7_A30 3-day moving window of site 1-7 normalized gage height (GH)

N_GH-1-7_A90 90-day moving window of site 1-7 normalized gage height (GH)

N_GH-1-8C_A10 10-day moving window of site 1-8C normalized gage height (GH)

N_GH-1-8C_A180 180-day moving window of site 1-8C normalized gage height (GH)

N_GH-1-8C_A30 30-day moving window of site 1-8C normalized gage height (GH)

N_GH-1-8C_A30 3-day moving window of site 1-8C normalized gage height (GH)

N_GH-1-8C_A90 90-day moving window of site 1-8C normalized gage height (GH)

N_GH-1-9_A10 10-day moving window of site 1-9 normalized gage height (GH)

N_GH-1-9_A180 180-day moving window of site 1-9 normalized gage height (GH)

N_GH-1-9_A30 30-day moving window of site 1-9 normalized gage height (GH)

N_GH-1-9_A30 3-day moving window of site 1-9 normalized gage height (GH)

N_GH-1-9_A90 90-day moving window of site 1-9 normalized gage height (GH)

Q1_A0 3-day moving window average of Q1 aggregated flows

Q1_A1 10-day moving window average of Q1 aggregated flows

Q1_A2 30-day moving window average of Q1 aggregated flows

Q1_A3 90-day moving window average of Q1 aggregated flows

Q1_A4 210-day moving window average of Q1 aggregated flows

Q1_A5 330-day moving window average of Q1 aggregated flows

Q1_D0  Difference between the 3-day and 10-day moving window average of Q1 aggregated flows

Q1_D1  Difference between the 10-day and 30-day moving window average of Q1 aggregated flows

Q1_D2 Difference between the 30-day and 90-day moving window average of Q1 aggregated flows

Q1_D3 Difference between the 90-day and 210-day moving window average of Q1 aggregated flows

Q1_D4 Difference between the 210-day and 330-day moving window average of Q1 aggregated flows

Q2_A0 3-day moving window average of Q2 aggregated flows

Q2_A1 10-day moving window average of Q2 aggregated flows

Q2_A2 30-day moving window average of Q2 aggregated flows

Q2_A3 90-day moving window average of Q2 aggregated flows

Q2_A4 210-day moving window average of Q2 aggregated flows

Q2_A5 330-day moving window average of Q2 aggregated flows

Q2_D0 Difference between the 3-day and 10-day moving window average of Q2 aggregated flows

Q2_D1 Difference between the 10-day and 30-day moving window average of Q2 aggregated flows

Q2_D2  Difference between the 30-day and 90-day moving window average of Q2 aggregated flows

Q2_D3 Difference between the 90-day and 210-day moving window average of Q2 aggregated flows
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Appendix 1.  List of variables used in the study.—Continued

Variable Description

Q2_D4  Difference between the 210-day and 330-day moving window average of Q2 aggregated flows

Q3_A0 3-day moving window average of Q3 aggregated flows

Q3_A1  10-day moving window average of Q3 aggregated flows

Q3_A2 30-day moving window average of Q3 aggregated flows

Q3_A3 90-day moving window average of Q3 aggregated flows

Q3_A4 210-day moving window average of Q3 aggregated flows

Q3_A5 330-day moving window average of Q3 aggregated flows

Q3_D0 Difference between the 3-day and 10-day moving window average of Q3 aggregated flows

Q3_D1 Difference between the 10-day and 30-day moving window average of Q3 aggregated flows

Q3_D2 Difference between the 30-day and 90-day moving window average of Q3 aggregated flows

Q3_D3 Difference between the 90-day and 210-day moving window average of Q3 aggregated flows

Q3_D4  Difference between the 210-day and 330-day moving window average of Q3 aggregated flows

Q4_A0 3-day moving window average of Q4 aggregated flows

Q4_A1 10-day moving window average of Q4 aggregated flows

Q4_A2 30-day moving window average of Q4 aggregated flows

Q4_A3 90-day moving window average of Q4 aggregated flows

Q4_A4 210-day moving window average of Q4 aggregated flows

Q4_A5 330-day moving window average of Q4 aggregated flows

Q4_D0 Difference between the 3-day and 10-day moving window average of Q4 aggregated flows

Q4_D1 Difference between the 10-day and 30-day moving window average of Q4 aggregated flows

Q4_D2 Difference between the 30-day and 90-day moving window average of Q4 aggregated flows

Q4_D3 Difference between the 90-day and 210-day moving window average of Q4 aggregated flows

Q4_D4 Difference between the 210-day and 330-day moving window average of Q4 aggregated flows

Q5_A0 3-day moving window average of Q5 aggregated flows

Q5_A1 10-day moving window average of Q5 aggregated flows

Q5_A2 30-day moving window average of Q5 aggregated flows

Q5_A3  90-day moving window average of Q5 aggregated flows

Q5_A4 210-day moving window average of Q5 aggregated flows

Q5_A5  330-day moving window average of Q5 aggregated flows

Q5_D0 Difference between the 3-day and 10-day moving window average of Q5 aggregated flows

Q5_D1 Difference between the 10-day and 30-day moving window average of Q5 aggregated flows

Q5_D2  Difference between the 30-day and 90-day moving window average of Q5 aggregated flows

Q5_D3  Difference between the 90-day and 210-day moving window average of Q5 aggregated flows

Q5_D4 Difference between the 210-day and 330-day moving window average of Q5 aggregated flows

Q6_A0 3-day moving window average of Q6 aggregated flows

Q6_A1 10-day moving window average of Q6 aggregated flows

Q6_A2 30-day moving window average of Q6 aggregated flows

Q6_A3  90-day moving window average of Q6 aggregated flows

Q6_A4 210-day moving window average of Q6 aggregated flows

Q6_A5 330-day moving window average of Q6 aggregated flows
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Appendix 1.  List of variables used in the study.—Continued

Variable Description

Q6_D0 Difference between the 3-day and 10-day moving window average of Q6 aggregated flows

Q6_D1  Difference between the 10-day and 30-day moving window average of Q6 aggregated flows

Q6_D2 Difference between the 30-day and 90-day moving window average of Q6 aggregated flows

Q6_D3 Difference between the 90-day and 210-day moving window average of Q6 aggregated flows

Q6_D4 Difference between the 210-day and 330-day moving window average of Q6 aggregated flows

R_SC Residual time series computed from static spatially interpolating specific conductance model

R_TP Residual time series computed from static spatially interpolating total phosphorus model

RAIN_A0 3-day moving window average of rainfall

RAIN_A1  10-day moving window average of rainfall

RAIN_A2 30-day moving window average of rainfall

RAIN_A3 90-day moving window average of rainfall

RAIN_A4  210-day moving window average of rainfall

RAIN_A5 330-day moving window average of rainfall

RAIN_D0 Difference between the 3-day and 10-day moving window average of rainfall

RAIN_D1 Difference between the 10-day and 30-day moving window average of rainfall

RAIN_D2 Difference between the 30-day and 90-day moving window average of rainfall

RAIN_D3 Difference between the 90-day and 210-day moving window average of rainfall

RAIN_D4 Difference between the 210-day and 330-day moving window average of rainfall

RAIN-ET-COMB_A180 180-day moving window average of the combined rainfall and evapotranspiration variable

RAIN-ET-COMB_A3 3-day moving window average of the combined rainfall and evapotranspiration variable

RAIN-ET-COMB_A30 30-day moving window average of the combined rainfall and evapotranspiration variable

RAIN-ET-COMB_A9 9-day moving window average of the combined rainfall and evapotranspiration variable

RAIN-ET-COMB_A90 90-day moving window average of the combined rainfall and evapotranspiration variable

RAIN-ET-COMB_D3 Difference between the 3-day and 9-day moving window average of combined rainfall and  
evapotranspiration variable

RAIN-ET-COMB_D30 Difference between the 30-day and 90-day moving window average of combined rainfall and  
evapotranspiration variable

RAIN-ET-COMB_D9 Difference between the 9-day and 30-day moving window average of combined rainfall and  
evapotranspiration variable

RAIN-ET-COMB_D90 Difference between the 90-day and 180-day moving window average of combined rainfall and  
evapotranspiration variable

S39-SC_I90_A10 10-day moving window average of the 90-day interpolated specific conductance concentration  
at the S-39 control structure

S39-SC_I90_A180 180-day moving window average of the 90-day interpolated specific conductance concentration  
at the S-39 control structure

S39-SC_I90_A30 30-day moving window average of the 90-day interpolated specific conductance concentration  
at the S-39 control structure

S39-SC_I90_A30 3-day moving window average of the 90-day interpolated specific conductance concentration  
at the S-39 control structure

S39-SC_I90_A90 90-day moving window average of the 90-day interpolated specific conductance concentration  
at the S-39 control structure

S39-SC_I90_D10 Difference between the 10-day and 30-day moving window average of interpolated specific conductance  
concentration at the S-39 control structure
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Appendix 1.  List of variables used in the study.—Continued

Variable Description

S39-SC_I90_D3 Difference between the 3-day and 10-day moving window average of interpolated specific conductance  
concentration at the S-39 control structure

S39-SC_I90_D30 Difference between the 30-day and 90-day moving window average of interpolated specific conductance  
concentration at the S-39 control structure

S39-SC_I90_D90 Difference between the 90-day and 180-day moving window average of interpolated specific conductance  
concentration at the S-39 control structure

S6-TP_I90_A10 10-day moving window average of the 90-day interpolated total phosphorus concentration  
at the S-6 control structure

S6-TP_I90_A180 180-day moving window average of the 90-day interpolated total phosphorus concentration  
at the S-6 control structure

S6-TP_I90_A30 30-day moving window average of the 90-day interpolated total phosphorus concentration  
at the S-6 control structure

S6-TP_I90_A30 3-day moving window average of the 90-day interpolated total phosphorus concentration  
at the S-6 control structure

S6-TP_I90_A90 90-day moving window average of the 90-day interpolated total phosphorus concentration  
at the S-6 control structure

S6-TP_I90_D10 Difference between the 10-day and 30-day moving window average of interpolated total phosphorus  
concentration at the S-6 control structure

S6-TP_I90_D3 Difference between the 3-day and 10-day moving window average of interpolated total phosphorus  
concentration at the S-6 control structure

S6-TP_I90_D30 Difference between the 30-day and 90-day moving window average of interpolated total phosphorus  
concentration at the S-6 control structure

S6-TP_I90_D90 Difference between the 90-day and 180-day moving window average of interpolated total phosphorus  
concentration at the S-6 control structure

SC Total phosphorus at the XYZ sampling sites—stacked variable

TOTQ_A0  3-day moving window average of total flow (TOTQ)

TOTQ_A1 10-day moving window average of total flow (TOTQ)

TOTQ_A2  30-day moving window average of total flow (TOTQ)

TOTQ_A3 90-day moving window average of total flow (TOTQ)

TOTQ_A4  210-day moving window average of total flow (TOTQ)

TOTQ_A5 330-day moving window average of total flow (TOTQ)

TOTQ_D0  Difference between the 3-day and 10-day moving window average of total flow (TOTQ)

TOTQ_D1 Difference between the 10-day and 30-day moving window average of total flow (TOTQ)

TOTQ_D2 Difference between the 30-day and 90-day moving window average of total flow (TOTQ)

TOTQ_D3  Difference between the 90-day and 210-day moving window average of total flow (TOTQ)

TOTQ_D4 Difference between the 210-day and 330-day moving window average of total flow (TOTQ)

TP Specific conductance at the LOX and XYZ sampling sites—stacked variable

X X location of gaging station or water quality sampling site

Y Y location of gaging station or water quality sampling site
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1.    Introduction

This document describes how to install and operate an empirical model (LOXANN DSS) of the Arthur R. Marshall 
Loxahatchee National Wildlife Refuge (Refuge). LOXANN is a decision support system (DSS) built around a suite of empirical 
hydrologic and water-quality models.  

2.   LOXMODEL Installation, Removal, and Technical Assistance

NOTE: LOXANN will not run on 64-bit Windows XP® and Vista® operating systems because of incompatibility 
of the NNCALC32.xll Add-in with these operating systems. NNCALC32.xll is used to execute the Artificial Neural Network 
(ANN) models.

2.1.  Installation

1.  Create a folder called LOXMODEL at the top level of your C: drive.

2.  Extract all files from LOXMODEL-yyyymmdd.zip1 from the CD–ROM provided by the USGS into the LOXMODEL 
	 folder. The zip file contains the following application files:

•	 LOXMODEL-yyyymmdd.xls—A Microsoft (MS) Excel® spreadsheet application.

•	 Files with an “enn” extension are the ANN files—there are five ANN files:

1.	 p_gh_errs-use.enn

2.	 p_sc-use.enn

3.	 p_r_sc-use.enn

4.	 p_tp-use.enn

5.	 p_r_tp-use.enn

•	 NNCALC32.xll—An MS Excel Add-in used to execute the ANN model (*.enn) files.

•	 LOXMODELUserGuide-yyyymmdd.doc—The MS Word® file that you are reading right now.

•	 LOXMODEL-Install-yyyymmdd.doc—An MS Word file with these installation instructions.

3.  Open your copy of MS Excel® for MS Office 2000® (or newer). Ensure that the standard Excel Add-ins listed below are
	 installed and checked “available.” 
	 Analysis Toolpak
	 Analysis Toolpak—VBA

Add-ins are accessed from Excel’s Tools menu. If any are missing, it may be necessary to install them from your MS 		
Office CD–ROM.

4.  Set the macro security level of Excel to either medium or low using Tools > Macro > Security. LOXANN uses VBA macros  
	 for a variety of purposes and must be able to execute them to operate correctly.

5.  Install the NNCALC32 Add-in that resides in the NNCALC folder described in Step 1. This may be accomplished by  
	 clicking on Tools > Add-ins > Browse, browse to the LOXMODEL folder you created, click on the NNCALC32 icon,  
	 then click OK.

6.  Open the LOXMODEL-yyyymmdd.xls Excel spreadsheet application. When Excel asks if you want to run macros click  
	 “Enable Macros,” otherwise LOXMODEL will not operate correctly.

1 yyyymmdd is the version date of the LOXMODEL image to be installed.
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Select the “Controls” worksheet (fig. 2–1). “Controls” is the worksheet that lets the user set up and run simulations.  
At the top-left corner of “Controls” is a text box labeled “Path Where ANN Model Files Are Located.” The model files  
are the *.enn files of the ANNs. Type in the fully qualified path name of the folder setup in (1) above and save the Excel 
application using File > Save for the setup changes to be permanent.

Just below the text box is a field labeled “ANNs Connected.” This field will have a value = “TRUE” if the application  
is properly configured and ready to use. If the field is blank, try exiting Excel and reopening  Excel and the  
LOXMODEL application.

A blank field indicates that one or more ANNs cannot execute because either the NNCALC32 Add-in is not installed  
per (5) or NNCALC32 cannot find *.enn files because the folder path name in the “Where model files are located”  
text box is incorrect. 

If you cannot get LOXMODEL to operate, re-check the configuration items in (3)–(6) above. 

2.2.  Removal

Simply delete the folder created to hold the LOXANN DSS files and its contents. Consider removing the Add-ins and  
reverting to the default MS Excel security settings.

2.3.  Technical Assistance

Please contact Paul Conrads of the USGS at (803) 750-6140, pconrads@usgs.gov, if you have questions or problems   
with LOXANN DSS.

Figure 31.  Model simulator controls used to set parameters and run a simulation in the LOXANN decision support system.Figure 2–1.  Screenshot of “Controls” worksheet. 
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3.   LOXANN DSS Features and Operation

LOXMODEL is opened like any standard Excel workbook. Simply open the LOXMODEL-yyyymmdd.xls file and  
you are ready to go. LOXANN DSS and its graphical user interface (GUI) are made up of a number of worksheets that are 
detailed below.

3.1.  Parameter Descriptions, Nomenclature, and “ReleaseNotes” Worksheet

LOXANN refers to many input and output parameters usually in the form of column headers (fig. 2–2). Moving the  
mouse over a header marked with a red caret in the right hand corner of the header will provide a description of the  
header parameter. 

Descriptions of parameters also are provided in the “ReleaseNotes” worksheet. This worksheet describes changes made in 
different releases of LOXANN’s development history and any new features. Some of the prefixes, suffixes, and other modifiers 
that are used in parameter names include

•	 “d”: used as a prefix to indicate that the parameter is a difference between two other parameter values

•	 “p”: used to indicate that the parameter is a model prediction

•	 “m”: used to indicate that the parameter’s value is either

◦◦ an actual measurement

◦◦ a model prediction made using an actual measurement as an input value

•	 “u”: used to indicate that a parameter’s value is set by the user.

Modifiers can be used in combination, for example, dGH(u-m) as shown in figure 2–2.

Figure 2–2.  On-line description of parameter dGH(u-m) on the “Run” worksheet.
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3.2.  “Info” Worksheet 

The “Info” worksheet is automatically displayed when LOXANN is first loaded (fig. 2–3).  It contains the program’s 
version date and the contact information of its developers.

3.3.  “Controls” Worksheet

The “Controls” worksheet (fig. 2–4) is the GUI component that lets the user setup and run simulations. 

A text box labeled “Path Where ANN Model Files Are Located” (fig. 2–4) is located on the “Controls” worksheet. It is 
used to configure LOXANN when it is first installed on a user’s computer and is described further in section 4. The “Start” 
and “End” dates for simulations can be set using the scroll bars at center left. The end date must be more recent than the start 
date. The “SimDate” field indicates the time stamp for which LOXANN’s models are currently generating output values. The 
“Step#” is an integer counter that indicates how many time steps (days) have been executed since the start of a simulation. The 
“SimDate=Start” button sets the current time stamp to the Simulation “Start” date. The “Step>>” button increases the current 
time stamp by one time step.

Figure 2–3.  “Info” worksheet.

Figure 2–4.  Simulation controls on “Controls” worksheet.
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The “RUN” button will start and run a simulation between 
the dates indicated by the Simulation “Start” and “End” dates. 
A simulation may be stopped at any time during a run by 
holding down the “Esc” key, after which a pop-up window will 
appear like that shown in figure 2–5. Click on the “End” button 
to stop the simulation, then click the “Reset” button shown at 
center right in figure 2–4. The user will not need to use other 
options (Continue, Debug, or Help) on the pop-up window. The 
“Reset” button activates Excel’s automatic calculation feature 
(autocalc). Because the model programmatically manipulates 
autocalc for performance reasons, interrupting a simulation 
can sometimes leave the model in a state where autocalc is not 
activated. This is remedied by clicking the “Reset” button.

LOXANN provides detailed numerical and streaming 
graphical information that can be observed during simulations or when incrementally stepping through time. This allows the 
user to examine specific periods and behaviors of interest in detail. Because of the added computational load, simulations 
are slowed as more models are activated, and streaming graphics and simulation output are generated. To speed calculations 
and the generation of output, a number of check boxes (lower left in figure 2–4) allow the user to activate/deactivate models, 
LOXANN’s graphics features, and write model input and output data. 

The gage height (GH) linear models are always active because their output is required by the specific conductance (SC)  
and total phosphorus (TP) models. The spatially interpolating artificial neural network model (SIANN) that partially  
corrects for the prediction error εGH of the linear GH models is toggled ON/OFF using the “GH error ANN ON” box. 
The SC and TP models are toggled using the “…Predictions ON” boxes. Trend graphs on the “Input Graphs” and “GH Graphs” 
are toggled using the “GH Graphs ON” box. Trend graphs on the “SC Graphs” and “TP Graphs” are toggled using the  
“SC Graphs ON” and “TP Graphs ON” boxes, respectively. Three-dimensional (3D) color gradient displays of GHs and  
SC and TP concentrations on the “3DVis” worksheet are toggled using the “… 3D ON” boxes.

A minimum of 330 days (time steps) of control structure flow values is required for the GH model to execute because  
the model uses moving window averages up to that size to simulate GH dynamics. The measured data for most structures is 
complete; however, the data for the G-94A, G-94B, and G-94C (summed into Q5) are missing prior to April 15, 2000. Thus,  
GH model runs that use the “use%” Input Option will not execute until 330 time steps after this date, which is March 10, 2001. 
The GH model will execute for earlier dates when using user options “cfs” and “UserDefQ” for G-94A, G-94B, and G-94C on 
the “Q Setpoints” worksheet because the user inputs for these sites are then purely synthetic (see Section 3.4). 

A minimum of 180 time steps of GH predictions is required for the SC and TP models to execute because the models use 
moving window averages up to that size to simulate SC and TP dynamics. Therefore, the total requirement in terms of run time 
before SC and TP predictions are made is 330 time steps for the GH model plus 180 time steps for the SC and TP models. Use 
the displayed “Step#” value (fig. 2–4) on the “Controls” and other worksheets to assist in setting up and monitoring simulations.

LOXANN also will write input and output data to the “Output” worksheet. The “Write Output” check box at the lower 
right in figure 2–4 toggles this feature. The “Clear Output” button erases all data in the “Output” worksheet to allow data  
from a new simulation to be recorded.

Figure 2–6 shows the GH information fields on the “Controls” worksheet. By site location, the GHm column shows the 
measured GHs for the current time step. The GHpm column shows the predicted GH values made by the GH model while using 
measured control structure flows for input data. Whether or 
not the GH error correction ANN model (“GH error ANN 
ON,” fig. 2–4) is activated will affect these values. The 
dGH(u-m) column shows the predicted GH using user-defined 
Q inputs minus either the measured GH, when available, or 
the GH predicted using measured Q inputs when the measured 
GH is unavailable. The GHpu column shows dGH(u-m) plus 
either the measured GH, when available, or the GH predicted 
using measured Q inputs.

Figure 2–5.  Pop-up window that appears when a simulation 
is interrupted by using the “Esc” key.

Figure 2–6.  GH fields on “Controls” worksheet.
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Figure 2–7 shows the control structure flow information fields on the “Controls” worksheet. By structure, the Option  
column shows the input flow option selected by the user on the “Q Setpoints” worksheet. The %, cfs, and UserDefQ columns 
show what the user-set flow input values would be for the current time step if Option was set at %, cfs, or UserDefQ, 
respectively. The user-set input flow values also are set on “Q Setpoints.” The Qm column shows the current measured  
flows. The Qu column shows which of the input flow options (%, cfs, or UserDefQ) is being input per the Option setting.

3.4.  “Q Setpoints” Worksheet

Figure 2–8 shows the upper portion of the “Q Setpoints” worksheet, which is the component of LOXANN’s GUI  
that allows the user to set flow setpoints for each control structure. Actual setpoint values used for each structure are  
determined by the associated scroll bars. By structure, the scroll bars in the “Input Option” column are used to select the  
type of user-set input to use. The type selected is shown in a field immediately above each scroll bar. The “%” option multiplies 
the measured flow by a percentage set using the % scroll bar shown at the right in figure 2–8. The “cfs” option sets the flow 
 to a constant value in units of cubic feet per second using the cfs scroll bar immediately below the % scroll bar. The 
“UserDefQ” option causes LOXANN to read values from a flow time series copied by the user into the “UserDefQs”  
worksheet. To minimize the extrapolation of the models to conditions much different than those used to train the models,  
the “Q Setpoints” worksheet also lists the historical maximum and minimum values for each structure during the study period, 
and upper and lower limits allowed for the user setting. 

Figure 2–8.  Upper 
portion of “Q Setpoints” 
worksheet.

Figure 2–7.  Q fields on 
“Controls” worksheet.
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3.5.  “Database” and “Output” Worksheets

The “Database” worksheet contains the measured data used by LOXANN to run simulations (fig. 2–9). These data  
are described in table 2–1 and are derived from the raw field measurements. The data are augmented by calculated  
parameters, the values of which are calculated “on-the-fly” by LOXANN’s computer code. The user should not alter  
data in the “Database” worksheet.

Figure 2–9.  Example of measured data from the “Database” worksheet.
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Table 2–1.  Descriptions of “Database” worksheet parameters.
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LOXANN writes a record of key parameters for a particular simulation run to the “Output” worksheet (fig. 2–10).  
The “Write Output” check box on the “Controls” worksheet must be checked for output to be written. The parameters  
written to the “Output” worksheet are described in table 2–2. The user can copy output values into another Excel workbook  
for further analysis. The “Clear Output” button located on the “Controls” worksheet erases all data in the “Output” worksheet  
to allow data from a new simulation to be recorded.

Figure 2–10.  Example output from the “Output” worksheet showing user-set control structure flows.
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Table 2–2.  Descriptions of “OUTPUT” worksheet parameters.
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3.6.  “UserDefQs” Worksheet

The “UserDefQs” worksheet allows the user to create customized flow time series for each control structure and have  
them run as the user-set inputs during simulations (fig. 2–11). The time series are simply pasted into the “UserDefQs”  
worksheet and individually activated for the control structure flows when their Input Option is set to “UserDefQ.” The time 
series must be time-synchronized with the dates shown in the “DATE” column at the left. Options for each structure are set  
to “UserDefQ” on the “Q Setpoints” worksheet. 

Figure 2–11.  Example of “UserDefQs” worksheet showing user-defined control structure flows.
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3.7 “Inputs Graphs,” “GH Graphs,” “SC Graphs,” and “TP Graphs” Worksheets

LOXANN provides streaming numerical and graphical trends for input parameters on the “Inputs Graphs” worksheet  
and as output GH, SC, and TP predictions on the “GH Graphs,” “SC Graphs,” and “TP Graphs” worksheets, respectively  
(fig. 2–12). The trend graphs show 90-day moving windows that update automatically as the time step is changed. The  
“Graphs ON” check box on each worksheet must be checked for its graphs to be active. These worksheets also provide a  
subset of the simulation controls that are found on the “Controls” worksheet so that the user can observe the behaviors of 
specific parameters of interest during simulation or manual stepping using the “Step>>” button. A summary of each of these 
worksheets follows.

•	 “Inputs Graphs”

◦◦ current values of:

·· by control structure—user input option (Option), and measured (Qm) and user-set (Qu) flows

·· by GH site—measured GH (GHm), GH predicted with user-set flows (GHu), and their difference dGH(u-m)

◦◦ 90-day trend graphs of:

·· RAIN + ET (rainfall and evapotranspiration) and measured and user-set control structure summed flows  
(TOTQm and TOTQu)

·· by control structure—measured and user-set flows differentiated by “m” and “u” suffixes

•	 “GH Graphs”

◦◦ current values of:

·· under headings of A3, A10, A30, A90, A210, and A330—the 3, 10, 30, 90, 210, and 330-day MWAs of  
summed RAIN + ET and TOTQm and TOTQu

·· by GH site—GHm, GHu, and dGH(u-m)

◦◦ 90-day trend graphs of:

·· GHm and GHu on one graph

·· by GH site—GHm, predicted GH using input measured control structure flows (GHpm), predicted GH using  
input user-set control structure flows (GHpu), and the predicted εGH calculated by the SIANN using input 
measured control structure flows (GH-ERRpm)

•	 “SC Graphs”

◦◦ current values of:

·· under headings of A3, A10, A30, A90, A210, and A330—the 3, 10, 30, 90, 210, and 330-day MWAs of  
summed RAIN + ET and TOTQm and TOTQu

·· measured SC (SCm), SC predicted with measured flows (SCpm), and SC predicted with user-set flows  
(SCpu)

◦◦ 90-day trend graphs by site of SCm, SCpm, and SCpu

•	 “TP Graphs”

◦◦ current values of:

·· under headings of A3, A10, A30, A90, A210, and A330—the 3, 10, 30, 90, 210, and 330-day MWAs of  
summed RAIN + ET and TOTQm and TOTQu

·· measured TP (TPm), TP predicted with measured flows (TPpm), and TP predicted with user-set flows (TPpu)

◦◦ 90-day trend graphs by site of TPm, TPpm, and TPpu
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3.8.  “3DVis” Worksheet

LOXANN’s “3DVis” worksheet provides 3D graphical displays of the spatial and temporal variability of GH, SC,  
and TP in portions of the Refuge. The appropriate “3D ON” check boxes must be checked for the displays to operate.  
The SC and (or) TP models must be active and have been run under simulation for enough time steps for them to generate 
predictions. “3DVis” provides a subset of the simulation controls that are found on the “Controls” worksheet so that the  
user can observe the behaviors of specific parameters of interest during simulation or manual stepping using the “Step>>” 
button. The 3D displays will update for each time step and appear as animations when the models are run under simulation. 

At the top of the “GH Graphs” worksheet under the headings of A3, A10, A30, A90, A210, and A330, the current values  
of 3, 10, 30, 90, 210, and 330-day MWAs of summed RAIN + ET and TOTQm and TOTQu are shown. The topmost graph 
is a bar chart showing GHm and GHpu at each GH site for the current time step (fig. 2–13). As shown in figures 2–14 to A–16, 
pairs of 3D graphs are shown for GHm and GHpu, SCpm and SCpu, and TPpm and TPpu, respectively. To orient the user as to 
the portion of the Refuge being displayed, maps showing the Refuge and location of the gages or sampling sites are displayed  
to the left of the 3D graphs. 

Figure 2–12.  Example of “GH Graphs” worksheet showing simulation controls and streaming graphics.

Figure 2–13.  Bar graph on “‘3DVis” worksheet showing GHm and GHpu at each GH site.
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Figure 2–15.  Three-dimensional displays of SCpm (left) and SCpu (right). Values in all cells are calculated by the SC 
SIANN-based model.

Figure 2–16.  Three-dimensional displays of TPpm (left) and TPpu (right). Values in all cells are calculated by the TP 
SIANN-based model.

Figure 2–14.  Three-dimensional displays of GHm (left) and GHpu (right). Values in cells not having monitoring sites for 
which predictions are made are calculated by linear interpolation. 
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